Cancer research最新文献

筛选
英文 中文
SMAD4 and KRAS Status Shape Cancer Cell-Stromal Crosstalk and Therapeutic Response in Pancreatic Cancer. SMAD4和KRAS状态影响胰腺癌细胞间质串扰和治疗反应。
IF 12.5 1区 医学
Cancer research Pub Date : 2025-01-22 DOI: 10.1158/0008-5472.CAN-24-2330
Eloise G Lloyd, Muntadher Jihad, Judhell S Manansala, Wenlong Li, Priscilla S W Cheng, Gianluca Mucciolo, Marta Zaccaria, Sara Pinto Teles, Joaquín Araos Henríquez, Sneha Harish, Rebecca Brais, Sally Ashworth, Weike Luo, Paul M Johnson, Lisa Veghini, Mireia Vallespinos, Vincenzo Corbo, Giulia Biffi
{"title":"SMAD4 and KRAS Status Shape Cancer Cell-Stromal Crosstalk and Therapeutic Response in Pancreatic Cancer.","authors":"Eloise G Lloyd, Muntadher Jihad, Judhell S Manansala, Wenlong Li, Priscilla S W Cheng, Gianluca Mucciolo, Marta Zaccaria, Sara Pinto Teles, Joaquín Araos Henríquez, Sneha Harish, Rebecca Brais, Sally Ashworth, Weike Luo, Paul M Johnson, Lisa Veghini, Mireia Vallespinos, Vincenzo Corbo, Giulia Biffi","doi":"10.1158/0008-5472.CAN-24-2330","DOIUrl":"10.1158/0008-5472.CAN-24-2330","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) contains an extensive stroma that modulates response to therapy, contributing to the dismal prognosis associated with this cancer. Evidence suggests that PDAC stromal composition is shaped by mutations within malignant cells, but most previous work has focused on pre-clinical models driven by KrasG12D and mutant Trp53. Elucidation of the contribution of additional known oncogenic drivers, including KrasG12V mutation and Smad4 loss, is needed to increase understanding of malignant cell-stroma crosstalk in PDAC. Here, we used single-cell RNA-sequencing to analyze the cellular landscape of Trp53-mutant mouse models driven by KrasG12D or KrasG12V in which Smad4 was wild-type or deleted. KrasG12D Smad4-deleted PDAC developed a fibro-inflammatory rich stroma with increased malignant JAK/STAT cell signaling and enhanced therapeutic response to JAK/STAT inhibition. SMAD4 loss in KrasG12V PDAC differently altered the tumor microenvironment compared to KrasG12D PDAC, and the malignant compartment lacked JAK/STAT signaling dependency. Thus, malignant cell genotype impacts cancer cell and stromal cell phenotypes in PDAC, directly affecting therapeutic efficacy.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multipotent PROX1+ Tumor Stem/Progenitor Cell Population Emerges During Intestinal Tumorigenesis and Mediates Radioresistance in Colorectal Cancer. 多能PROX1+肿瘤干细胞/祖细胞群在肠道肿瘤发生过程中出现并介导结直肠癌的放射耐药。
IF 12.5 1区 医学
Cancer research Pub Date : 2025-01-22 DOI: 10.1158/0008-5472.CAN-23-1851
Pauliina Kallio, Cinzia Bessone, Fatemeh Seyednasrollah, Jefim Brodkin, Marika Lassila, Jenny Högström, Alejandra González-Loyola, Tatiana V Petrova, Caj Haglund, Kari Alitalo
{"title":"A Multipotent PROX1+ Tumor Stem/Progenitor Cell Population Emerges During Intestinal Tumorigenesis and Mediates Radioresistance in Colorectal Cancer.","authors":"Pauliina Kallio, Cinzia Bessone, Fatemeh Seyednasrollah, Jefim Brodkin, Marika Lassila, Jenny Högström, Alejandra González-Loyola, Tatiana V Petrova, Caj Haglund, Kari Alitalo","doi":"10.1158/0008-5472.CAN-23-1851","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-23-1851","url":null,"abstract":"<p><p>Colorectal carcinoma (CRC) progression is associated with an increase in PROX1+ tumor cells, which exhibit features of CRC stem cells and contribute to metastasis. Here, we aimed to provide a better understanding to the function of PROX1+ cells in CRC, investigating their progeny and their role in therapy resistance. PROX1+ cells in intestinal adenomas of ApcMin/+ mice expressed intestinal epithelial and CRC stem cell markers, and cells with high PROX1 expression could both self-renew tumor stem/progenitor cells and contribute to differentiated tumor cells. Most PROX1-lineage traced tumor cells were stem/progenitor cells, which can supply cells to multiple intestinal tumor cell lineages, whereas most lineage-traced LGR5+ tumor cells were enterocytes, indicating that PROX1+ and LGR5+ tumor stem cells have distinct differentiation programs. Although the PROX1+ tumor cells proliferated slower than PROX1- cells, irradiation increased the proportion of PROX1+ cells in human CRC cell lines, patient-derived organoids, and tumor xenografts. Furthermore, transcripts related to DNA damage repair (DDR) were enriched in PROX1+ vs. PROX1- cells in adenomas and in CRC tumor cells from patients. Experiments with PROX1 silencing and overexpression indicated that PROX1 expression enhances CRC cell colony formation following irradiation. PROX1 interacted with DDR proteins, including components of non-homologous end-joining (NHEJ) and base excision repair, and inhibition of NHEJ repair led to a decreased proportion of PROX1+ cells following irradiation. In conclusion, PROX1+ cells are irradiation-resistant tumor stem/progenitor cells capable of self-renewal and differentiation. DDR inhibitors could represent a strategy to target the treatment-resistant PROX1+ tumor stem cells.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Lean, Obese, and Weight Loss Models Reveals TREM2 Deficiency Attenuates Breast Cancer Growth Uniquely in Lean Mice and Alters Clonal T Cell Populations 瘦、肥胖和减肥模型的比较显示TREM2缺乏在瘦小鼠中独特地减弱乳腺癌生长并改变克隆T细胞群
IF 11.2 1区 医学
Cancer research Pub Date : 2025-01-22 DOI: 10.1158/0008-5472.can-24-3511
Elysa W. Pierro, Matthew A. Cottam, Hanbing An, Brian D. Lehmann, Jennifer A. Pietenpol, Kathryn E. Wellen, Liza Makowski, Jeffrey C. Rathmell, Barbara Fingleton, Alyssa H. Hasty
{"title":"Comparison of Lean, Obese, and Weight Loss Models Reveals TREM2 Deficiency Attenuates Breast Cancer Growth Uniquely in Lean Mice and Alters Clonal T Cell Populations","authors":"Elysa W. Pierro, Matthew A. Cottam, Hanbing An, Brian D. Lehmann, Jennifer A. Pietenpol, Kathryn E. Wellen, Liza Makowski, Jeffrey C. Rathmell, Barbara Fingleton, Alyssa H. Hasty","doi":"10.1158/0008-5472.can-24-3511","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-3511","url":null,"abstract":"Obesity is an established risk factor for breast cancer development and poor prognosis. The adipose environment surrounding breast tumors, which is inflamed in obesity, has been implicated in tumor progression, and TREM2, a transmembrane receptor expressed on macrophages in adipose tissue and tumors, is an emerging therapeutic target for cancer. A better understanding of the mechanisms for the obesity-breast cancer association and the potential benefits of weight loss could help inform treatment strategies. Here, we utilized lean, obese, and weight loss mouse models to examine the impacts of TREM2 deficiency (Trem2+/+ and Trem2-/-) on postmenopausal breast cancer depending on weight history conditions. Trem2 deficiency constrained tumor growth in lean, but not obese or weight loss, mice. Single-cell RNA sequencing, in conjunction with VDJ sequencing of tumor and tumor-adjacent mammary adipose tissue (mATTum-adj) immune cells, revealed differences in the immune landscapes across the different models. Tumors of lean Trem2-/- mice exhibited a shift in clonal CD8+ T cells from an exhausted to an effector memory state, accompanied increased clonality of CD4+ Th1 cells, that was not observed in any other diet-genotype group. Notably, identical T cell clonotypes were identified in the tumor and mATTum-adj of the same mouse. Finally, anti-PD-1 therapy restricted tumor growth in lean and weight loss, but not obese, mice. These findings indicate that weight history could impact the efficacy of TREM2 inhibition in postmenopausal breast cancer. The reported immunological interactions between tumors and the surrounding adipose tissue highlight significant differences under obese and weight loss conditions.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"14 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BEEx Is an Open-Source Tool That Evaluates Batch Effects in Medical Images to Enable Multicenter Studies. BEEx是一个开源工具,用于评估医学图像中的批处理效果,以实现多中心研究。
IF 12.5 1区 医学
Cancer research Pub Date : 2025-01-15 DOI: 10.1158/0008-5472.CAN-23-3846
Yuxin Wu, Xiongjun Xu, Yuan Cheng, Xiuming Zhang, Fanxi Liu, Zhenhui Li, Lei Hu, Anant Madabhushi, Peng Gao, Zaiyi Liu, Cheng Lu
{"title":"BEEx Is an Open-Source Tool That Evaluates Batch Effects in Medical Images to Enable Multicenter Studies.","authors":"Yuxin Wu, Xiongjun Xu, Yuan Cheng, Xiuming Zhang, Fanxi Liu, Zhenhui Li, Lei Hu, Anant Madabhushi, Peng Gao, Zaiyi Liu, Cheng Lu","doi":"10.1158/0008-5472.CAN-23-3846","DOIUrl":"10.1158/0008-5472.CAN-23-3846","url":null,"abstract":"<p><p>The batch effect is a nonbiological variation that arises from technical differences across different batches of data during the data generation process for acquisition-related reasons, such as collection of images at different sites or using different scanners. This phenomenon can affect the robustness and generalizability of computational pathology- or radiology-based cancer diagnostic models, especially in multicenter studies. To address this issue, we developed an open-source platform, Batch Effect Explorer (BEEx), that is designed to qualitatively and quantitatively determine whether batch effects exist among medical image datasets from different sites. A suite of tools was incorporated into BEEx that provide visualization and quantitative metrics based on intensity, gradient, and texture features to allow users to determine whether there are any image variables or combinations of variables that can distinguish datasets from different sites in an unsupervised manner. BEEx was designed to support various medical imaging techniques, including microscopy and radiology. Four use cases clearly demonstrated the ability of BEEx to identify batch effects and validated the effectiveness of rectification methods for batch effect reduction. Overall, BEEx is a scalable and versatile framework designed to read, process, and analyze a wide range of medical images to facilitate the identification and mitigation of batch effects, which can enhance the reliability and validity of image-based studies. Significance: BEEx is a prescreening tool for image-based analyses that allows researchers to evaluate batch effects in multicenter studies and determine their origin and magnitude to facilitate development of accurate AI-based cancer models.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"218-230"},"PeriodicalIF":12.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Targeting and Structural Characterization of a Sotorasib-Modified KRAS G12C-MHC I Complex Demonstrate the Antitumor Efficacy of Hapten-Based Strategies. sotorasib修饰的KRAS G12C-MHC I复合物的治疗靶向和结构表征证明了基于半抗原的抗肿瘤策略的有效性。
IF 12.5 1区 医学
Cancer research Pub Date : 2025-01-15 DOI: 10.1158/0008-5472.CAN-24-2450
Apurva Pandey, Peter J Rohweder, Lieza M Chan, Chayanid Ongpipattanakul, Dong Hee Chung, Bryce Paolella, Fiona M Quimby, Ngoc Nguyen, Kliment A Verba, Michael J Evans, Charles S Craik
{"title":"Therapeutic Targeting and Structural Characterization of a Sotorasib-Modified KRAS G12C-MHC I Complex Demonstrate the Antitumor Efficacy of Hapten-Based Strategies.","authors":"Apurva Pandey, Peter J Rohweder, Lieza M Chan, Chayanid Ongpipattanakul, Dong Hee Chung, Bryce Paolella, Fiona M Quimby, Ngoc Nguyen, Kliment A Verba, Michael J Evans, Charles S Craik","doi":"10.1158/0008-5472.CAN-24-2450","DOIUrl":"10.1158/0008-5472.CAN-24-2450","url":null,"abstract":"<p><p>Antibody-based therapies have emerged as a powerful strategy for the management of diverse cancers. Unfortunately, tumor-specific antigens remain challenging to identify and target. Recent work established that inhibitor-modified peptide adducts derived from KRAS G12C are competent for antigen presentation via MHC I and can be targeted by antibody-based therapeutics, offering a means to directly target an intracellular oncoprotein at the cell surface with combination therapies. Here, we validated the antigen display of \"haptenated\" KRAS G12C peptide fragments on tumors in mouse models treated with the FDA-approved KRAS G12C covalent inhibitor sotorasib using PET/CT imaging of an 89Zr-labeled P1B7 IgG antibody, which selectively binds sotorasib-modified KRAS G12C-MHC I complexes. Targeting this peptide-MHC I complex with radioligand therapy using 225Ac- or 177Lu-P1B7 IgG effectively inhibited tumor growth in combination with sotorasib. Elucidation of the 3.1 Å cryo-EM structure of P1B7 bound to a haptenated KRAS G12C peptide-MHC I complex confirmed that the sotorasib-modified KRAS G12C peptide is presented via a canonical binding pose and showed that P1B7 binds the complex in a T-cell receptor-like manner. Together, these findings demonstrate the potential value of targeting unique oncoprotein-derived, haptenated MHC I complexes with radioligand therapeutics and provide a structural framework for developing next generation antibodies. Significance: Radioligand therapy using an antibody targeting KRAS-derived, sotorasib-modified MHC I complexes elicits antitumor effects superior to those of sotorasib alone and provides a potential strategy to repurpose sotorasib as a hapten to overcome resistance.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"329-341"},"PeriodicalIF":12.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FOXR2 Targets LHX6+/DLX+ Neural Lineages to Drive Central Nervous System Neuroblastoma. FOXR2靶向LHX6+/DLX+神经系,驱动中枢神经系统神经母细胞瘤。
IF 12.5 1区 医学
Cancer research Pub Date : 2025-01-15 DOI: 10.1158/0008-5472.CAN-24-2248
Selin Jessa, Antonella De Cola, Bhavyaa Chandarana, Michael McNicholas, Steven Hébert, Adam Ptack, Damien Faury, Jessica W Tsai, Andrey Korshunov, Timothy N Phoenix, Benjamin Ellezam, David T W Jones, Michael D Taylor, Pratiti Bandopadhayay, Manav Pathania, Nada Jabado, Claudia L Kleinman
{"title":"FOXR2 Targets LHX6+/DLX+ Neural Lineages to Drive Central Nervous System Neuroblastoma.","authors":"Selin Jessa, Antonella De Cola, Bhavyaa Chandarana, Michael McNicholas, Steven Hébert, Adam Ptack, Damien Faury, Jessica W Tsai, Andrey Korshunov, Timothy N Phoenix, Benjamin Ellezam, David T W Jones, Michael D Taylor, Pratiti Bandopadhayay, Manav Pathania, Nada Jabado, Claudia L Kleinman","doi":"10.1158/0008-5472.CAN-24-2248","DOIUrl":"10.1158/0008-5472.CAN-24-2248","url":null,"abstract":"<p><p>Central nervous system neuroblastoma with forkhead box R2 (FOXR2) activation (NB-FOXR2) is a high-grade tumor of the brain hemispheres and a newly identified molecular entity. Tumors express dual neuronal and glial markers, leading to frequent misdiagnoses, and limited information exists on the role of FOXR2 in their genesis. To identify their cellular origins, we profiled the transcriptomes of NB-FOXR2 tumors at the bulk and single-cell levels and integrated these profiles with large single-cell references of the normal brain. NB-FOXR2 tumors mapped to LHX6+/DLX+ lineages derived from the medial ganglionic eminence, a progenitor domain in the ventral telencephalon. In vivo prenatal Foxr2 targeting to the ganglionic eminences in mice induced postnatal cortical tumors recapitulating human NB-FOXR2-specific molecular signatures. Profiling of FOXR2 binding on chromatin in murine models revealed an association with ETS transcriptional networks, as well as direct binding of FOXR2 at key transcription factors that coordinate initiation of gliogenesis. These data indicate that NB-FOXR2 tumors originate from LHX6+/DLX+ interneuron lineages, a lineage of origin distinct from that of other FOXR2-driven brain tumors, highlight the susceptibility of ventral telencephalon-derived interneurons to FOXR2-driven oncogenesis, and suggest that FOXR2-induced activation of glial programs may explain the mixed neuronal and oligodendroglial features in these tumors. More broadly, this work underscores systematic profiling of brain development as an efficient approach to orient oncogenic targeting for in vivo modeling, critical for the study of rare tumors and development of therapeutics. Significance: Profiling the developing brain enabled rationally guided modeling of FOXR2-activated CNS neuroblastoma, providing a strategy to overcome the heterogeneous origins of pediatric brain tumors that hamper tumor modeling and therapy development. See related commentary by Orr, p. 195.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"231-250"},"PeriodicalIF":12.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Functional Transcriptomic Landscape Informs Therapeutic Strategies in Multiple Myeloma. 功能转录组格局为多发性骨髓瘤治疗策略提供依据
IF 12.5 1区 医学
Cancer research Pub Date : 2025-01-15 DOI: 10.1158/0008-5472.CAN-24-0886
Praneeth Reddy Sudalagunta, Rafael R Canevarolo, Mark B Meads, Maria Silva, Xiaohong Zhao, Christopher L Cubitt, Samer S Sansil, Gabriel DeAvila, Raghunandan Reddy Alugubelli, Ryan T Bishop, Alexandre Tungesvik, Qi Zhang, Oliver Hampton, Jamie K Teer, Eric A Welsh, Sean J Yoder, Bijal D Shah, Lori Hazlehurst, Robert A Gatenby, Dane R Van Domelen, Yi Chai, Feng Wang, Andrew DeCastro, Amanda M Bloomer, Erin M Siegel, Conor C Lynch, Daniel M Sullivan, Melissa Alsina, Taiga Nishihori, Jason Brayer, John L Cleveland, William Dalton, Christopher J Walker, Yosef Landesman, Rachid Baz, Ariosto S Silva, Kenneth H Shain
{"title":"The Functional Transcriptomic Landscape Informs Therapeutic Strategies in Multiple Myeloma.","authors":"Praneeth Reddy Sudalagunta, Rafael R Canevarolo, Mark B Meads, Maria Silva, Xiaohong Zhao, Christopher L Cubitt, Samer S Sansil, Gabriel DeAvila, Raghunandan Reddy Alugubelli, Ryan T Bishop, Alexandre Tungesvik, Qi Zhang, Oliver Hampton, Jamie K Teer, Eric A Welsh, Sean J Yoder, Bijal D Shah, Lori Hazlehurst, Robert A Gatenby, Dane R Van Domelen, Yi Chai, Feng Wang, Andrew DeCastro, Amanda M Bloomer, Erin M Siegel, Conor C Lynch, Daniel M Sullivan, Melissa Alsina, Taiga Nishihori, Jason Brayer, John L Cleveland, William Dalton, Christopher J Walker, Yosef Landesman, Rachid Baz, Ariosto S Silva, Kenneth H Shain","doi":"10.1158/0008-5472.CAN-24-0886","DOIUrl":"10.1158/0008-5472.CAN-24-0886","url":null,"abstract":"<p><p>Several therapeutic agents have been approved for treating multiple myeloma, a cancer of bone marrow-resident plasma cells. Predictive biomarkers for drug response could help guide clinical strategies to optimize outcomes. In this study, we present an integrated functional genomic analysis of tumor samples from patients multiple myeloma that were assessed for their ex vivo drug sensitivity to 37 drugs, clinical variables, cytogenetics, mutational profiles, and transcriptomes. This analysis revealed a multiple myeloma transcriptomic topology that generates \"footprints\" in association with ex vivo drug sensitivity that have both predictive and mechanistic applications. Validation of the transcriptomic footprints for the anti-CD38 mAb daratumumab (DARA) and the nuclear export inhibitor selinexor (SELI) demonstrated that these footprints can accurately classify clinical responses. The analysis further revealed that DARA and SELI have anticorrelated mechanisms of resistance, and treatment with a SELI-based regimen immediately after a DARA-containing regimen was associated with improved survival in three independent clinical trials, supporting an evolutionary-based strategy involving sequential therapy. These findings suggest that this unique repository and computational framework can be leveraged to inform underlying biology and to identify therapeutic strategies to improve treatment of multiple myeloma. Significance: Functional genomic analysis of primary multiple myeloma samples elucidated predictive biomarkers for drugs and molecular pathways mediating therapeutic response, which revealed a rationale for sequential therapy to maximize patient outcomes.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"378-398"},"PeriodicalIF":12.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editor's Note: Mitochondrially Targeted p53 Has Tumor Suppressor Activities In vivo. 编者注:线粒体靶向p53在体内具有肿瘤抑制活性。
IF 12.5 1区 医学
Cancer research Pub Date : 2025-01-15 DOI: 10.1158/0008-5472.CAN-24-4772
Flaminia Talos, Oleksi Petrenko, Patricio Mena, Ute M Moll
{"title":"Editor's Note: Mitochondrially Targeted p53 Has Tumor Suppressor Activities In vivo.","authors":"Flaminia Talos, Oleksi Petrenko, Patricio Mena, Ute M Moll","doi":"10.1158/0008-5472.CAN-24-4772","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-4772","url":null,"abstract":"","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"85 2","pages":"400"},"PeriodicalIF":12.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stayin' Alive: Targeting Chromatin Regulators of Clonal Hematopoiesis Promotes CD8 T-cell Stemness. 保持活着靶向克隆造血的染色质调节因子可促进 CD8 T 细胞的干性。
IF 12.5 1区 医学
Cancer research Pub Date : 2025-01-15 DOI: 10.1158/0008-5472.CAN-24-4458
Xingjian Qiu, Aaron Yang, Amanda C Poholek
{"title":"Stayin' Alive: Targeting Chromatin Regulators of Clonal Hematopoiesis Promotes CD8 T-cell Stemness.","authors":"Xingjian Qiu, Aaron Yang, Amanda C Poholek","doi":"10.1158/0008-5472.CAN-24-4458","DOIUrl":"10.1158/0008-5472.CAN-24-4458","url":null,"abstract":"<p><p>T-cell exhaustion remains a significant barrier to immunotherapeutic success for many patients with solid tumors. Growing evidence suggests that enhanced survival and self-renewal properties of a stem-like precursor T-cell population are correlated with a survival advantage in immunotherapy. In a recent study published in Science, Kang and colleagues found that three epigenetic regulators commonly mutated in clonal hematopoiesis also control precursor T-cell progression to exhaustion. By leveraging the finding that patients with enhanced survival in myelodysplastic syndrome had T-cell mutations in the ASXL1 gene, this study demonstrates that loss of ASXL1 in T cells preserves their stem cell-like properties of self-renewal and survival, leading to increased antitumor responses when combined with immunotherapy in both mouse models and human cancers. These findings have significant implications for new therapeutic options that target epigenetic modifiers promoting exhaustion together with immune checkpoint blockade to improve response rates in patients.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"200-202"},"PeriodicalIF":12.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription Factor Fingerprint Provides Clues for Brain Tumor Cell of Origin. 转录因子指纹图谱为脑肿瘤细胞起源提供线索。
IF 12.5 1区 医学
Cancer research Pub Date : 2025-01-15 DOI: 10.1158/0008-5472.CAN-24-3599
Brent A Orr
{"title":"Transcription Factor Fingerprint Provides Clues for Brain Tumor Cell of Origin.","authors":"Brent A Orr","doi":"10.1158/0008-5472.CAN-24-3599","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-3599","url":null,"abstract":"<p><p>Mouse models that faithfully represent the biology of human brain tumors are critical tools for unraveling the underlying tumor biology and screening for potential precision therapies. This is especially true of rare tumor types, many of which have correspondingly few xenograft or cell lines available. Although our understanding of the specific biological pathways driving cancer has improved significantly, identifying the appropriate progenitor populations to drive oncogenic processes represents a significant barrier to efficient mouse model production. In this issue of Cancer Research, Jessa and colleagues developed an innovative transcription factor fingerprinting method to map the cellular origin of central nervous system neuroblastoma, FOXR2-activated to medial ganglionic eminence-derived interneurons, which could then be efficiently targeted in the developing mouse brain using in utero electroporation. This approach serves as a blueprint for investigating other rare pediatric brain tumors, potentially accelerating progress toward the development of mouse models and identification of effective therapies. See related article by Jessa et al., p. 231.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"85 2","pages":"195-196"},"PeriodicalIF":12.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信