{"title":"Development of HPV 16/18 E6 oncoprotein paper-based nanokit for enhanced detection of HPV 16/18 E6 oncoprotein in cervical cancer screening","authors":"L. M. Mwai, M. C. Kyama, C. Ngugi, Edwin Walong","doi":"10.1101/2020.04.29.20084459","DOIUrl":"https://doi.org/10.1101/2020.04.29.20084459","url":null,"abstract":"Cervical cancer caused mainly by high risk human papillomavirus (HPV) 16 and 18 strains is the second most prevalent cancer of women in Kenya. It is often diagnosed late when treatment is difficult due to very low percentage of women attending screening thus, mortalities remain high. The most available tests in low-and-middle-income countries (LMICs) have relatively low specificity, low sensitivity, require a laboratory setting and huge technical and financial support not readily available. HPV 16/18 E6 oncoprotein has been identified as a potential biomarker in a more specific early diagnosis of cervical cancer. This retrospective cross-sectional study developed a paper-based nanokit with enhanced detection of HPV 16/18 E6 oncoprotein for cervical cancer screening. The HRP labelled antibodies HPV 16 E6/18 E6-HRP (CP15) passively conjugated to citrate stabilized 20nm gold nanoparticles were evaluated for immune sensing mechanism using a recombinant viral HPV E6 protein. The diagnostic accuracy was evaluated using 50 tissue lysates from formalin fixed paraffin embedded cervical biopsy, including control (n=10), Mild Dysplasia (n=10), Cervical intraepithelial neoplasia 3 (CIN3) (n=10), Cervical intraepithelial neoplasia 4 (CIN4) (n=10) and invasive carcinoma (n=10). The molecular technique used was dot blot molecular assay. A positive result was generated by catalytic oxidation of peroxidase enzyme on 3,3',5,5'-Tetramethylbenzidine (TMB) substrate. The gold nanoparticles were used to enhance the signal produced by peroxidase activity of horseradish peroxidase (HRP) enzyme giving a more sensitive assay as compared to use of non-conjugated antibody. This study provides a significantly high and reliable diagnostic accuracy for precancerous and cancerous lesions with a sensitivity of 90%, a specificity of 90%, a likelihood ratio for positive and negative tests as 9:1 and 1:9 respectively, a Positive Predictive Value of 97.3% and a Negative Predictive Value of 69.2%. This study avails a sensitive, rapid test using paper-based nanotechnology which can be utilised in community-based screening outreaches particularly in low- and middle-income countries.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89545368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. A. Filho, Otávio Augusto Leitão dos Santos, Mayara Santana dos Santos, B. P. Backx
{"title":"Exploiting Nanotechnology to Target Viruses","authors":"S. A. Filho, Otávio Augusto Leitão dos Santos, Mayara Santana dos Santos, B. P. Backx","doi":"10.33696/NANOTECHNOL.1.003","DOIUrl":"https://doi.org/10.33696/NANOTECHNOL.1.003","url":null,"abstract":"Since the early years, different civilizations have been affected by infectious diseases caused by bacteria, fungi, parasites, and, mainly, by viruses. Viruses from the beginning impacted socio-economic development, as well as leveraging different public health problems. Treatments with traditional methods, such as drugs and vaccines, are used to contain the spread of infectious diseases. However, these treatments are not enough. Thus, it is necessary to develop new therapeutic strategies, and the nanotechnology associated with medical devices stands out with great potential for diagnosis, prevention, and treatment of various infectious diseases. This review will present an overview based on nanotechnological concepts and applications with the main focus on viral infections.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82019168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CO-Releasing Materials: Therapeutic Implications and Challenges towards Drug Discovery","authors":"M. Faizan, Niaz Muhammad","doi":"10.33696/NANOTECHNOL.1.001","DOIUrl":"https://doi.org/10.33696/NANOTECHNOL.1.001","url":null,"abstract":"Since last century, carbon monoxide (CO) generally regarded as “silent killer” and life-threatening for living organisms because of its colourless, odourless and poisonous nature [1]. Haldane explored the poisonous nature of CO can be exerted as car-boxy hemoglobin (COHb) through hemoglobin dissociation parameters [2,3]. This study explains the biological role of the CO inside the mammalian systems.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77937120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}