In silico pharmacology最新文献

筛选
英文 中文
Computational targeting of iron uptake proteins in Covid-19 induced mucormycosis to identify inhibitors via molecular dynamics, molecular mechanics and density function theory studies. 通过分子动力学、分子力学和密度函数理论研究,计算 Covid-19 诱导的粘液瘤病中铁摄取蛋白的靶向性,以确定抑制剂。
In silico pharmacology Pub Date : 2024-09-29 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00264-7
Manjima Sen, B M Priyanka, D Anusha, S Puneetha, Anagha S Setlur, Chandrashekar Karunakaran, Amulya Tandur, C S Prashant, Vidya Niranjan
{"title":"Computational targeting of iron uptake proteins in Covid-19 induced mucormycosis to identify inhibitors via molecular dynamics, molecular mechanics and density function theory studies.","authors":"Manjima Sen, B M Priyanka, D Anusha, S Puneetha, Anagha S Setlur, Chandrashekar Karunakaran, Amulya Tandur, C S Prashant, Vidya Niranjan","doi":"10.1007/s40203-024-00264-7","DOIUrl":"10.1007/s40203-024-00264-7","url":null,"abstract":"<p><p>Mucormycosis is a concerning invasive fungal infection with difficult diagnosis, high mortality rates, and limited treatment options. Iron availability is crucial for fungal growth that causes this disease. This study aimed to computationally target iron uptake proteins in <i>Rhizopus arrhizus, Lichtheimia corymbifera,</i> and <i>Mucor circinelloides</i> to identify inhibitors, thereby halting fungal growth and intervening in mucormycosis pathogenesis. Seven important iron uptake proteins were identified, modeled, and validated using Ramachandran plots. An in-house antifungal library of ~ 15,401 compounds was screened in molecular docking studies with these proteins. The best small molecule-protein complexes were simulated at 100 ns using Maestro, Schrodinger. Toxicity predictions suggested all six molecules, identified as the best binding compounds to seven proteins, belonged to lower toxicity levels per GHS classification. A molecular mechanics GBSA study for all seven complexes indicated low standard deviations after calculating free binding energies every 10 ns of the 100 ns trajectory. Density functional theory via quantum mechanics approaches highlighted the HOMO, LUMO, and other properties of the six best-bound molecules, revealing their binding capabilities and behaviour. This study sheds light on the molecular mechanisms and protein-ligand interactions, providing a multi-dimensional view towards the use of FDBD01920, FDBD01923, and FDBD01848 as stable antifungal ligands.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00264-7.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular docking and dynamics simulation of farnesol as a potential anticancer agent targeting mTOR pathway. 法尼醇作为靶向 mTOR 通路的潜在抗癌剂的分子对接和动力学模拟。
In silico pharmacology Pub Date : 2024-09-28 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00259-4
Tabasum Ali, Ifat Jan, Rajath Ramachandran, Rabiah Bashir, Khurshid Iqbal Andrabi, Ghulam Nabi Bader
{"title":"Molecular docking and dynamics simulation of farnesol as a potential anticancer agent targeting mTOR pathway.","authors":"Tabasum Ali, Ifat Jan, Rajath Ramachandran, Rabiah Bashir, Khurshid Iqbal Andrabi, Ghulam Nabi Bader","doi":"10.1007/s40203-024-00259-4","DOIUrl":"10.1007/s40203-024-00259-4","url":null,"abstract":"<p><p>Farnesol is a natural acyclic sesquiterpene alcohol, found in various essential oils such as, lemon grass, citronella, tuberose, neroli, and musk. It has a molecular mass of 222.372 g/mol and chemical formula of C₁₅H₂₆O. The main objective of this study was to assess the effect of farnesol on mTOR and its two downstream effectors, p70S6K and eIF4E, which are implicated in the development of cancer, via molecular dynamic simulation, and docking analysis in an in silico study. A multilayer, primarily computer-based analysis was conducted to assess farnesol's anticancer potential, with a focus on primary cancer targets. From the calculations performed, farnesol showed a binding affinity of - 9.66 kcal/mol, followed by binding affinity of - 7.4 kcal/mol and - 7.8 kcal/mol for mTOR, p70S6K and eIF4E respectively. Rapamycin showed the binding affinity of - 10.45 kcal/mol for mTOR, for p70S6K and eIF4E the calculated binding affinity was - 10.65 kcal/mol and 8.16 kcal/mol respectively. The binding affinity of farnesol was comparable to the standard drug rapamycin indicating its potential as an mTOR inhibitor. Molecular dynamics simulations suggest that the ligands (farnesol and rapamycin) were well trapped within the active site of the protein over a time gap of 50 ns. It is clear that farnesol showed relatively stable MD simulation results, with minor fluctuations and maintains a consistent binding orientation, suggesting a strong and stable interaction with the target proteins when compared to simulation data of standard drug. This study explores the potential of farnesol as an anticancer agent through an in-silico approach, focusing on its interaction with mTOR and its downstream effectors. Inhibition of mTOR signaling pathway may be responsible for the anticancer effect of farnesol. As this pathway plays a crucial role in cell proliferation and survival, making it a significant target in cancer research.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative multi-target analysis of Urtica dioica for gout arthritis treatment: a network pharmacology and clustering approach. 治疗痛风性关节炎的荨麻多靶点综合分析:一种网络药理学和聚类方法。
In silico pharmacology Pub Date : 2024-09-28 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00254-9
Maryam Qasmi, Muhammad Mazhar Fareed, Haider Ali, Zarmina Khan, Sergey Shityakov
{"title":"Integrative multi-target analysis of <i>Urtica dioica</i> for gout arthritis treatment: a network pharmacology and clustering approach.","authors":"Maryam Qasmi, Muhammad Mazhar Fareed, Haider Ali, Zarmina Khan, Sergey Shityakov","doi":"10.1007/s40203-024-00254-9","DOIUrl":"10.1007/s40203-024-00254-9","url":null,"abstract":"<p><p><i>Urtica dioica</i> (stinging nettle) has been traditionally used in Chinese medicine for the treatment of joint pain and rheumatoid arthritis. This study aims to elucidate the active compounds and mechanisms by which it acts against gout arthritis (GA). Gout-related genes were identified from the DisGeNet, GeneCards, and OMIM databases. These genes may play a role in inhibiting corresponding proteins targeted by the active compounds identified from the literature, which have an oral bioavailability of ≥ 30% and a drug-likeness score of ≥ 0.18. A human protein-protein interaction network was constructed, resulting in sixteen clusters containing plant-targeted genes, including ABCG2, SLC22A12, MAP2K7, ADCY10, RELA, and TP53. The key bioactive compounds, apigenin-7-O-glucoside and kaempferol, demonstrated significant binding to SLC22A12 and ABCG2, suggesting their potential to reduce uric acid levels and inflammation. Pathway enrichment analysis further identified key metabolic pathways involved, highlighting a dual mechanism of anti-inflammatory and urate-lowering effects. These findings underscore the potential of <i>U. dioica</i> in targeting multiple pathways involved in GA, combining traditional medicine with modern pharmacology. This integrated approach provides a foundation for future research and the development of multi-target therapeutic strategies for managing gout arthritis.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00254-9.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438756/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein. 针对登革热病毒包膜蛋白的基于片段的硅学设计和药理模型。
In silico pharmacology Pub Date : 2024-09-20 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00262-9
Dwaipayan Chaudhuri, Satyabrata Majumder, Joyeeta Datta, Kalyan Giri
{"title":"In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein.","authors":"Dwaipayan Chaudhuri, Satyabrata Majumder, Joyeeta Datta, Kalyan Giri","doi":"10.1007/s40203-024-00262-9","DOIUrl":"10.1007/s40203-024-00262-9","url":null,"abstract":"<p><p>Dengue virus, an arbovirus of genus Flavivirus, is an infectious disease causing organisms in the tropical environment leading to numerous deaths every year. No therapeutic is available against the virus till date with only symptomatic relief available. Here, we have tried to design therapeutic compounds from scratch by fragment based method followed by pharmacophore based modelling to find suitable similar structure molecules and validated the same by MD simulation, followed by binding energy calculations and ADMET analysis. The receptor binding region of the dengue envelope protein was considered as the target for prevention of viral host cell entry and thus infection. This resulted in the final selection of kanamycin as a stable binding molecule against the Dengue virus envelope protein receptor binding domain. This study results in selection of a single molecule having high binding energy and prominent stable interactions as determined by post simulation analyses. This study aims to provide a direction for development of small molecule therapeutics against the dengue virus in order to control infection. This study may open a new avenue in the arena of structure based and fragment based therapeutic design to obtain novel molecules with therapeutic potential.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00262-9.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marine natural compounds as potential CBP bromodomain inhibitors for treating cancer: an in-silico approach using molecular docking, ADMET, molecular dynamics simulations and MM-PBSA binding free energy calculations. 海洋天然化合物作为治疗癌症的潜在 CBP 溴链抑制剂:使用分子对接、ADMET、分子动力学模拟和 MM-PBSA 结合自由能计算的室内方法。
In silico pharmacology Pub Date : 2024-09-18 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00258-5
Md Liakot Ali, Fabiha Noushin, Eva Azme, Md Mahmudul Hasan, Neamul Hoque, Afroz Fathema Metu
{"title":"Marine natural compounds as potential CBP bromodomain inhibitors for treating cancer: an in-silico approach using molecular docking, ADMET, molecular dynamics simulations and MM-PBSA binding free energy calculations.","authors":"Md Liakot Ali, Fabiha Noushin, Eva Azme, Md Mahmudul Hasan, Neamul Hoque, Afroz Fathema Metu","doi":"10.1007/s40203-024-00258-5","DOIUrl":"10.1007/s40203-024-00258-5","url":null,"abstract":"<p><p>The cAMP-responsive element binding protein (CREB) binding protein (CBP), a bromodomain-containing protein, engages with multiple transcription factors and enhances the activation of many genes. CBP bromodomain acts as an epigenetic reader and plays an important role in the CBP-chromatin interaction which makes it an important drug target for treating many diseases. Though inhibiting CBP bromodomain was reported to have great potential in cancer therapeutics, approved CBP bromodomain inhibitor is yet to come. We utilized various in silico approaches like molecular docking, ADMET, molecular dynamics (MD) simulations, MM-PBSA calculations, and in silico PASS predictions to identify potential CBP bromodomain inhibitors from marine natural compounds as they have been identified as having distinctive chemical structures and greater anticancer activities. To develop a marine natural compound library for this investigation, Lipinski's rule of five was used. Sequential investigations utilizing molecular docking, ADMET studies, 100 ns MD simulations, and MM-PBSA calculations revealed that three marine compounds-ascididemin, neoamphimedine, and stelletin A-demonstrated superior binding affinity compared to the standard inhibitor, 69 A. These compounds also exhibited suitable drug-like properties, a favorable safety profile, and formed stable protein-ligand complexes. The in-silico PASS tool predicted that these compounds have significant potential for anticancer activity. Among them, ascididemin demonstrated the highest binding affinity in both molecular docking and MM-PBSA calculations, as well as a better stability profile in MD simulations. Hence, ascididemin can be a potential inhibitor of CBP bromodomain. However, in vitro and in vivo validation is required for further confirmation of these findings.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00258-5.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of therapeutic potential of the Il24-p20 fusion protein against breast cancer: an in-silico approach. Il24-p20融合蛋白对乳腺癌治疗潜力的研究:一种内模拟方法。
In silico pharmacology Pub Date : 2024-09-18 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00252-x
Shahnila Qureshi, Nadeem Ahmed, Hafiz Muhammad Rehman, Muhammad Imran Amirzada, Fiza Saleem, Kainat Waheed, Afeefa Chaudhry, Iram Kafait, Muhammad Akram, Hamid Bashir
{"title":"Investigation of therapeutic potential of the Il24-p20 fusion protein against breast cancer: an in-silico approach.","authors":"Shahnila Qureshi, Nadeem Ahmed, Hafiz Muhammad Rehman, Muhammad Imran Amirzada, Fiza Saleem, Kainat Waheed, Afeefa Chaudhry, Iram Kafait, Muhammad Akram, Hamid Bashir","doi":"10.1007/s40203-024-00252-x","DOIUrl":"https://doi.org/10.1007/s40203-024-00252-x","url":null,"abstract":"<p><p>Targeted delivery of therapeutic anticancer chimeric molecules enhances drug efficacy. Numerous studies have focused on developing novel treatments by employing cytokines, particularly interleukins, to inhibit the growth of cancer cells. In the present study, we fused interleukin 24 with the tumor-targeting peptide P20 through a rigid linker to selectively target cancer cells. The secondary structure, tertiary structure, and physicochemical characteristics of the constructed chimeric IL-24-P20 protein were predicted by using bioinformatics tools. In-silico analysis revealed that the fusion construct has a basic nature with 175 amino acids and a molecular weight of 20 kDa. By using the Rampage and ERRAT2 servers, the validity and quality of the fusion protein were evaluated. The results indicated that 93% of the chimeric proteins contained 90.1% of the residues in the favoured region, resulting in a reliable structure. Finally, docking and simulation studies were conducted via ClusPro and Desmond Schrödinger, respectively. Our results indicate that the constructed fusion protein exhibits excellent quality, interaction capabilities, validity, and stability. These findings suggest that the fusion protein is a promising candidate for targeted cancer therapy.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anticipatory in silico vaccine designing based on specific antigenic epitopes from Streptococcus mutans against diabetic pathogenesis. 基于变异链球菌的特异性抗原表位设计预防糖尿病发病的预期性硅学疫苗。
In silico pharmacology Pub Date : 2024-09-18 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00260-x
Gopinath Murugan, Gugan Kothandan, Rajashree Padmanaban
{"title":"Anticipatory in silico vaccine designing based on specific antigenic epitopes from <i>Streptococcus mutans</i> against diabetic pathogenesis.","authors":"Gopinath Murugan, Gugan Kothandan, Rajashree Padmanaban","doi":"10.1007/s40203-024-00260-x","DOIUrl":"10.1007/s40203-024-00260-x","url":null,"abstract":"<p><p>The metabolic disorder Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycaemia, causing increased mortality and healthcare burden globally. Recent studies emphasize the impact of metabolites in the gut microbiome on T2DM pathogenesis. One such microbial metabolite, imidazole propionate (Imp) derived from histidine metabolism, is shown to interfere with insulin signalling and other key metabolic processes. The key enzyme urocanate reductase (UrdA) is involved in ImP production. Hence, we propose to develop a novel therapeutic vaccine against the gut microbe producing Imp based on UrdA as a target for treating T2DM using immunoinformatics approach. Antigenic, non-allergic, non-toxic, and immunogenic B cell and T cell potential epitopes were predicted using immunoinformatics servers and tools. These epitopes were adjoined using linker sequences, and to increase immunogenicity, adjuvants were added at the N-terminal end of the final vaccine construct. Further, to confirm the vaccine's safety, antigenic and non-allergic characteristics of the developed vaccine construct were assessed. The tertiary structure of the UrdA vaccine sequence was predicted using molecular modelling tools. A molecular docking study was utilized to understand the vaccine construct interaction with immune receptors, followed by molecular dynamics simulation and binding free energy calculations to assess stability of the complex. In silico cloning techniques were employed to evaluate the expression and translation effectiveness of the developed vaccine in pET vector. In conclusion, this study developed an in silico epitope-based vaccine construct as a novel adjunct therapeutic for T2DM.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery, lead identification and exploration of potential oxadiazole derivatives in targeting STAT3 as anti-cancer agents. 发现、鉴定和探索以 STAT3 为靶向的潜在噁二唑衍生物作为抗癌药物。
In silico pharmacology Pub Date : 2024-09-14 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00261-w
Vivek Panwar, Sounok SenGupta, Saroj Kumar, Praveen P Singh, Arun Kumar, Shavkatjon Azizov, Manoj K Gupta, Deepak Kumar
{"title":"Discovery, lead identification and exploration of potential oxadiazole derivatives in targeting STAT3 as anti-cancer agents.","authors":"Vivek Panwar, Sounok SenGupta, Saroj Kumar, Praveen P Singh, Arun Kumar, Shavkatjon Azizov, Manoj K Gupta, Deepak Kumar","doi":"10.1007/s40203-024-00261-w","DOIUrl":"https://doi.org/10.1007/s40203-024-00261-w","url":null,"abstract":"<p><p>Oxadiazoles an important heterocyclic scaffold of medicinal importance in the field of drug discovery. In the study, a library of oxadiazole based compounds was selected for screening against STAT-3 as anti-cancer target. STAT3 is a potential target of interest in cancer therapy. A total of 544 screened library of compounds was subjected to molecular docking against STAT-3 (6NJS and 6NQU). The compounds with good dock score and binding interations were further subjected to in-silico ADME analysis followed by toxicity estimation. A total of 141 hits were selected against 6NJS and 50 hits against 6NQU and further screened for kinetic properties and drug likeliness. The compounds were screened on the basis of physico-chemical properties, solubility, gastrointestinal absorption, BBB permeability, synthetic accessibility, Lipinski and other violations. Best compounds obtained after ADME analysis were further subjected for toxicity analysis. Carcinogenecity, mutagenicity, Ames and other important parameters were considered for toxicity based screening. The best leads thus obtained (compound 114 and 40) were further subjected to molecular dynamics against the respective target proteins. MD simulations were run to access the stability of C-114 and C-40 along with the dynamic behaviour of both complexes for about 100 ns and shows good stability with the proteins.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico analysis reveals α-amylase inhibitory potential of Taraxerol (Coccinia indica) and Epoxywithanolide-1 (Withania coagulans): a possible way to control postprandial hyperglycemia-induced endothelial dysfunction and cardiovascular events. 硅学分析揭示了蒲公英萜醇(Coccinia indica)和淫羊藿内酯-1(Withania coagulans)抑制α-淀粉酶的潜力:一种控制餐后高血糖诱发的内皮功能障碍和心血管事件的可能方法。
In silico pharmacology Pub Date : 2024-09-09 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00257-6
Lokesh Ravi, Venkatesh Sadhana, Pratishtha Jain, Shree Kumari Godidhar Raghuram, Mohanasrinivasan Vaithilingam, Reji Manjunathan, Ajith Kumar Krishnan, Mookkandi Palsamy Kesavan
{"title":"In silico analysis reveals α-amylase inhibitory potential of Taraxerol (<i>Coccinia indica</i>) and Epoxywithanolide-1 (<i>Withania coagulans</i>): a possible way to control postprandial hyperglycemia-induced endothelial dysfunction and cardiovascular events.","authors":"Lokesh Ravi, Venkatesh Sadhana, Pratishtha Jain, Shree Kumari Godidhar Raghuram, Mohanasrinivasan Vaithilingam, Reji Manjunathan, Ajith Kumar Krishnan, Mookkandi Palsamy Kesavan","doi":"10.1007/s40203-024-00257-6","DOIUrl":"https://doi.org/10.1007/s40203-024-00257-6","url":null,"abstract":"<p><p>Postprandial hyperglycemia (PPG) exacerbates endothelial dysfunction and impairs vascular function in diabetes as well in healthy people. Though synthetic drugs are available to regulate PPG, the severe gastrointestinal side effects of those medications have prompted the search for alternative treatments. Recently, some phytochemicals captured the attention because of their inhibitory effects on α-amylase to control diabetes. The aim of this study was to investigate and identify potential alpha-amylase inhibitors in <i>C. indica</i> and <i>W. coagulans</i>. This study also aims to understand one of the possible mechanisms of action of plants for their anti-diabetic activity. A total of 36 phytochemical ligands were subjected for protein-ligand docking analysis. Among the phytochemicals, Taraxerol and Epoxywithanolide-I demonstrated significant binding free energy of - 10.2 kcal/mol and - 11.9 kcal/mol respectively, which was higher than the reference acarbose with - 8.6 kcal/mol. These molecules were subjected for molecular dynamics simulation (MDS) analysis with alpha-amylase protein for a duration of 150 ns. Among the three complexes, Taraxerol and Epoxywithanolide-I complexes demonstrates strong potential as inhibitors of the target protein. MDS results were analyzed via root mean square deviation (RMSD), fluctuation of residues, potential energy, radii of gyration and solvent access surface area analysis. Taraxerol demonstrated a significantly low potential energy of - 1,924,605.25 kJ/mol, and Epoxywithanolide-I demonstrated - 1,964,113.3 kJ/mol of potential energy. RMSD plot shows that Epoxywithanolide-I has much higher stability than the other MDS complexes. Drugability and toxicity studies show that the test ligands are demonstrating strong potential as drug like molecules. The results of the study conclude that, Taraxerol of <i>C. indica</i> and Epoxywithanolide-I of <i>W. coagulans</i> are strong inhibitors of alpha-amylase enzyme and that, this is one of the possible mechanisms of action of the plants for their reported anti-diabetic activities. Further <i>in-vitro</i> analysis is in demand to prove the observed results.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical pharmacology and pharmacokinetics of curcumin tagged cilostazol nanodispersion for the management of diabetic nephropathy in wister rat model. 姜黄素标记西洛他唑纳米分散体用于治疗威斯特大鼠模型糖尿病肾病的临床前药理学和药代动力学。
In silico pharmacology Pub Date : 2024-09-02 eCollection Date: 2024-01-01 DOI: 10.1007/s40203-024-00256-7
Aruna Rawat, Samrat Chauhan, Monika, Rahul Pratap Singh, Sumeet Gupta, Vikas Jhawat
{"title":"Preclinical pharmacology and pharmacokinetics of curcumin tagged cilostazol nanodispersion for the management of diabetic nephropathy in wister rat model.","authors":"Aruna Rawat, Samrat Chauhan, Monika, Rahul Pratap Singh, Sumeet Gupta, Vikas Jhawat","doi":"10.1007/s40203-024-00256-7","DOIUrl":"10.1007/s40203-024-00256-7","url":null,"abstract":"<p><p>To evaluate the therapeutic potential of curcumin tagged cilostazol solid nano dispersion in wistar rat streptozotocin-nicotinamide-induced diabetic nephropathy. Cilostazol (CLT), a Phosphodiesterase (PDE) inhibitor has an inhibitory effect on reactive oxygen species (ROS), and Curcumin (Cur), an antioxidant, and anti-inflammatory, are water-soluble. Solid Nano dispersions were developed using the \"Box-Behnken Design\" and emulsion solvent evaporation procedure to improve the solubility and bioavailability. Streptozotocin (SPZ) and Nicotinamide (NA) caused diabetes in Wistar rats. DN developed 30-45 days after disease induction. All rat groups underwent histological, biochemical and pharmacokinetic evaluation. The optimized batch of Cilostazol Loaded Novel Curcumin Tagged Solid Nanodispersion (CLT-15 SND) estimated renal, lipid, and cytokine profiles better than the conventional batch. CLT-15 SND, given orally to diabetic rats for 45 days, significantly lowered fasting BGL and IL-6 levels and improved lipid and kidney-profile markers and body weight compared to plain Cilostazol Loaded Solid Nanodispersion (CLT-15 WC SND). CLT-15 SND treatment groups showed decreased blood glucose by 3.38 and 9.71 percent, increased body weight by 2.81 and 5.27 percent, improved Interleukin-6 (IL-6) by 21.36 and 18.36 percent, improved urine albumin levels by 5.67 and 14.19 percent and creatinine levels by 3.125 and 37.5 percent, improved serum urea by 30.48 percent, increased serum albumin by 2.59 and 11.18 percent, and decreased creatinine and 5.03 and 8.12 percent, respectively as compared to CLT-15 WC and MP treatment animal groups. CLT and Cur reduced IL-6, kidney, and lipid markers, demonstrating their renoprotective and pancreas-protective effects. CLT and Cur's inhibition may be the mechanism.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信