Karim Kadry;Max L. Olender;Andreas Schuh;Abhishek Karmakar;Kersten Petersen;Michiel Schaap;David Marlevi;Adam UpdePac;Takuya Mizukami;Charles Taylor;Elazer R. Edelman;Farhad R. Nezami
{"title":"Morphology-Based Non-Rigid Registration of Coronary Computed Tomography and Intravascular Images Through Virtual Catheter Path Optimization","authors":"Karim Kadry;Max L. Olender;Andreas Schuh;Abhishek Karmakar;Kersten Petersen;Michiel Schaap;David Marlevi;Adam UpdePac;Takuya Mizukami;Charles Taylor;Elazer R. Edelman;Farhad R. Nezami","doi":"10.1109/TMI.2024.3474053","DOIUrl":"10.1109/TMI.2024.3474053","url":null,"abstract":"Coronary computed tomography angiography (CCTA) provides 3D information on obstructive coronary artery disease, but cannot fully visualize high-resolution features within the vessel wall. Intravascular imaging, in contrast, can spatially resolve atherosclerotic in cross sectional slices, but is limited in capturing 3D relationships between each slice. Co-registering CCTA and intravascular images enables a variety of clinical research applications but is time consuming and user-dependent. This is due to intravascular images suffering from non-rigid distortions arising from irregularities in the imaging catheter path. To address these issues, we present a morphology-based framework for the rigid and non-rigid matching of intravascular images to CCTA images. To do this, we find the optimal virtual catheter path that samples the coronary artery in CCTA image space to recapitulate the coronary artery morphology observed in the intravascular image. We validate our framework on a multi-center cohort of 40 patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our registration approach significantly outperforms other approaches for bifurcation alignment. By providing a differentiable framework for multi-modal vascular co-registration, our framework reduces the manual effort required to conduct large-scale multi-modal clinical studies and enables the development of machine learning-based co-registration approaches.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"880-890"},"PeriodicalIF":0.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanfeng Zhou;Lingrui Li;Chenlong Wang;Le Song;Ge Yang
{"title":"GobletNet: Wavelet-Based High-Frequency Fusion Network for Semantic Segmentation of Electron Microscopy Images","authors":"Yanfeng Zhou;Lingrui Li;Chenlong Wang;Le Song;Ge Yang","doi":"10.1109/TMI.2024.3474028","DOIUrl":"10.1109/TMI.2024.3474028","url":null,"abstract":"Semantic segmentation of electron microscopy (EM) images is crucial for nanoscale analysis. With the development of deep neural networks (DNNs), semantic segmentation of EM images has achieved remarkable success. However, current EM image segmentation models are usually extensions or adaptations of natural or biomedical models. They lack the full exploration and utilization of the intrinsic characteristics of EM images. Furthermore, they are often designed only for several specific segmentation objects and lack versatility. In this study, we quantitatively analyze the characteristics of EM images compared with those of natural and other biomedical images via the wavelet transform. To better utilize these characteristics, we design a high-frequency (HF) fusion network, GobletNet, which outperforms state-of-the-art models by a large margin in the semantic segmentation of EM images. We use the wavelet transform to generate HF images as extra inputs and use an extra encoding branch to extract HF information. Furthermore, we introduce a fusion-attention module (FAM) into GobletNet to facilitate better absorption and fusion of information from raw images and HF images. Extensive benchmarking on seven public EM datasets (EPFL, CREMI, SNEMI3D, UroCell, MitoEM, Nanowire and BetaSeg) demonstrates the effectiveness of our model. The code is available at <uri>https://github.com/Yanfeng-Zhou/GobletNet</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"1058-1069"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhentao Liu;Yu Fang;Changjian Li;Han Wu;Yuan Liu;Dinggang Shen;Zhiming Cui
{"title":"Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction","authors":"Zhentao Liu;Yu Fang;Changjian Li;Han Wu;Yuan Liu;Dinggang Shen;Zhiming Cui","doi":"10.1109/TMI.2024.3473970","DOIUrl":"10.1109/TMI.2024.3473970","url":null,"abstract":"Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging. Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image, leading to considerable radiation exposure. This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses. While recent advances, including deep learning and neural rendering algorithms, have made strides in this area, these methods either produce unsatisfactory results or suffer from time inefficiency of individual optimization. In this paper, we introduce a novel geometry-aware encoder-decoder framework to solve this problem. Our framework starts by encoding multi-view 2D features from various 2D X-ray projections with a 2D CNN encoder. Leveraging the geometry of CBCT scanning, it then back-projects the multi-view 2D features into the 3D space to formulate a comprehensive volumetric feature map, followed by a 3D CNN decoder to recover 3D CBCT image. Importantly, our approach respects the geometric relationship between 3D CBCT image and its 2D X-ray projections during feature back projection stage, and enjoys the prior knowledge learned from the data population. This ensures its adaptability in dealing with extremely sparse view inputs without individual training, such as scenarios with only 5 or 10 X-ray projections. Extensive evaluations on two simulated datasets and one real-world dataset demonstrate exceptional reconstruction quality and time efficiency of our method.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"1083-1097"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Gradient-Based Approach to Fast and Accurate Head Motion Compensation in Cone-Beam CT","authors":"Mareike Thies;Fabian Wagner;Noah Maul;Haijun Yu;Manuela Goldmann;Linda-Sophie Schneider;Mingxuan Gu;Siyuan Mei;Lukas Folle;Alexander Preuhs;Michael Manhart;Andreas Maier","doi":"10.1109/TMI.2024.3474250","DOIUrl":"10.1109/TMI.2024.3474250","url":null,"abstract":"Cone-beam computed tomography (CBCT) systems, with their flexibility, present a promising avenue for direct point-of-care medical imaging, particularly in critical scenarios such as acute stroke assessment. However, the integration of CBCT into clinical workflows faces challenges, primarily linked to long scan duration resulting in patient motion during scanning and leading to image quality degradation in the reconstructed volumes. This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm, which leverages generalized derivatives of the backprojection operator for cone-beam CT geometries. Building on that, a fully differentiable target function is formulated which grades the quality of the current motion estimate in reconstruction space. We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods. Additionally, we investigate the architecture of networks used for quality metric regression and propose predicting voxel-wise quality maps, favoring autoencoder-like architectures over contracting ones. This modification improves gradient flow, leading to more accurate motion estimation. The presented method is evaluated through realistic experiments on head anatomy. It achieves a reduction in reprojection error from an initial average of 3mm to 0.61mm after motion compensation and consistently demonstrates superior performance compared to existing approaches. The analytic Jacobian for the backprojection operation, which is at the core of the proposed method, is made publicly available. In summary, this paper contributes to the advancement of CBCT integration into clinical workflows by proposing a robust motion estimation approach that enhances efficiency and accuracy, addressing critical challenges in time-sensitive scenarios.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"1098-1109"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AttriPrompter: Auto-Prompting With Attribute Semantics for Zero-Shot Nuclei Detection via Visual-Language Pre-Trained Models","authors":"Yongjian Wu;Yang Zhou;Jiya Saiyin;Bingzheng Wei;Maode Lai;Jianzhong Shou;Yan Xu","doi":"10.1109/TMI.2024.3473745","DOIUrl":"10.1109/TMI.2024.3473745","url":null,"abstract":"Large-scale visual-language pre-trained models (VLPMs) have demonstrated exceptional performance in downstream object detection through text prompts for natural scenes. However, their application to zero-shot nuclei detection on histopathology images remains relatively unexplored, mainly due to the significant gap between the characteristics of medical images and the web-originated text-image pairs used for pre-training. This paper aims to investigate the potential of the object-level VLPM, Grounded Language-Image Pre-training (GLIP), for zero-shot nuclei detection. Specifically, we propose an innovative auto-prompting pipeline, named AttriPrompter, comprising attribute generation, attribute augmentation, and relevance sorting, to avoid subjective manual prompt design. AttriPrompter utilizes VLPMs’ text-to-image alignment to create semantically rich text prompts, which are then fed into GLIP for initial zero-shot nuclei detection. Additionally, we propose a self-trained knowledge distillation framework, where GLIP serves as the teacher with its initial predictions used as pseudo labels, to address the challenges posed by high nuclei density, including missed detections, false positives, and overlapping instances. Our method exhibits remarkable performance in label-free nuclei detection, outperforming all existing unsupervised methods and demonstrating excellent generality. Notably, this work highlights the astonishing potential of VLPMs pre-trained on natural image-text pairs for downstream tasks in the medical field as well. Code will be released at github.com/AttriPrompter.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"982-993"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Organ Foundation Model for Universal Ultrasound Image Segmentation With Task Prompt and Anatomical Prior","authors":"Haobo Chen;Yehua Cai;Changyan Wang;Lin Chen;Bo Zhang;Hong Han;Yuqing Guo;Hong Ding;Qi Zhang","doi":"10.1109/TMI.2024.3472672","DOIUrl":"10.1109/TMI.2024.3472672","url":null,"abstract":"Semantic segmentation of ultrasound (US) images with deep learning has played a crucial role in computer-aided disease screening, diagnosis and prognosis. However, due to the scarcity of US images and small field of view, resulting segmentation models are tailored for a specific single organ and may lack robustness, overlooking correlations among anatomical structures of multiple organs. To address these challenges, we propose the Multi-Organ FOundation (MOFO) model for universal US image segmentation. The MOFO is optimized jointly from multiple organs across various anatomical regions to overcome the data scarcity and explore correlations between multiple organs. The MOFO extracts organ-invariant representations from US images. Simultaneously, the task prompt is employed to refine organ-specific representations for segmentation predictions. Moreover, the anatomical prior is incorporated to enhance the consistency of the anatomical structures. A multi-organ US database with segmentation labels, comprising 7039 images from 10 organs across various regions of the human body, has been established to develop and evaluate our model. Results demonstrate that the MOFO outperforms single-organ methods in terms of the Dice coefficient, 95% Hausdorff distance and average symmetric surface distance with statistically sufficient margins. Our experiments in multi-organ universal segmentation for US images serve as a pioneering exploration of improving segmentation performance by leveraging semantic and anatomical relationships within US images of multiple organs.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"1005-1018"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI","authors":"Zhuo-Xu Cui;Chentao Cao;Yue Wang;Sen Jia;Jing Cheng;Xin Liu;Hairong Zheng;Dong Liang;Yanjie Zhu","doi":"10.1109/TMI.2024.3473009","DOIUrl":"10.1109/TMI.2024.3473009","url":null,"abstract":"Diffusion models have emerged as a leading methodology for image generation and have proven successful in the realm of magnetic resonance imaging (MRI) reconstruction. However, existing reconstruction methods based on diffusion models are primarily formulated in the image domain, making the reconstruction quality susceptible to inaccuracies in coil sensitivity maps (CSMs). k-space interpolation methods can effectively address this issue but conventional diffusion models are not readily applicable in k-space interpolation. To overcome this challenge, we introduce a novel approach called SPIRiT-Diffusion, which is a diffusion model for k-space interpolation inspired by the iterative self-consistent SPIRiT method. Specifically, we utilize the iterative solver of the self-consistent term (i.e., k-space physical prior) in SPIRiT to formulate a novel stochastic differential equation (SDE) governing the diffusion process. Subsequently, k-space data can be interpolated by executing the diffusion process. This innovative approach highlights the optimization model’s role in designing the SDE in diffusion models, enabling the diffusion process to align closely with the physics inherent in the optimization model-a concept referred to as model-driven diffusion. We evaluated the proposed SPIRiT-Diffusion method using a 3D joint intracranial and carotid vessel wall imaging dataset. The results convincingly demonstrate its superiority over image-domain reconstruction methods, achieving high reconstruction quality even at a substantial acceleration rate of 10. Our code are available at <uri>https://github.com/zhyjSIAT/SPIRiT-Diffusion</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"1019-1031"},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-Dimensional Variable Slab-Selective Projection Acquisition Imaging","authors":"Jinil Park;Taehoon Shin;Jang-Yeon Park","doi":"10.1109/TMI.2024.3460974","DOIUrl":"10.1109/TMI.2024.3460974","url":null,"abstract":"Three-dimensional (3D) projection acquisition (PA) imaging has recently gained attention because of its advantages, such as achievability of very short echo time, less sensitivity to motion, and undersampled acquisition of projections without sacrificing spatial resolution. However, larger subjects require a stronger Nyquist criterion and are more likely to be affected by outer-volume signals outside the field of view (FOV), which significantly degrades the image quality. Here, we proposed a variable slab-selective projection acquisition (VSS-PA) method to mitigate the Nyquist criterion and effectively suppress aliasing streak artifacts in 3D PA imaging. The proposed method involves maintaining the vertical orientation of the slab-selective gradient for frequency-selective spin excitation and the readout gradient for data acquisition. As VSS-PA can selectively excite spins only in the width of the desired FOV in the projection direction during data acquisition, the effective size of the scanned object that determines the Nyquist criterion can be reduced. Additionally, unwanted signals originating from outside the FOV (e.g., aliasing streak artifacts) can be effectively avoided. The mitigation of the Nyquist criterion owing to VSS-PA was theoretically described and confirmed through numerical simulations and phantom and human lung experiments. These experiments further showed that the aliasing streak artifacts were nearly suppressed.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"728-737"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning With Explicit Shape Priors for Medical Image Segmentation","authors":"Xin You;Junjun He;Jie Yang;Yun Gu","doi":"10.1109/TMI.2024.3469214","DOIUrl":"10.1109/TMI.2024.3469214","url":null,"abstract":"Medical image segmentation is a fundamental task for medical image analysis and surgical planning. In recent years, UNet-based networks have prevailed in the field of medical image segmentation. However, convolutional neural networks (CNNs) suffer from limited receptive fields, which fail to model the long-range dependency of organs or tumors. Besides, these models are heavily dependent on the training of the final segmentation head. And existing methods can not well address aforementioned limitations simultaneously. Hence, in our work, we proposed a novel shape prior module (SPM), which can explicitly introduce shape priors to promote the segmentation performance of UNet-based models. The explicit shape priors consist of global and local shape priors. The former with coarse shape representations provides networks with capabilities to model global contexts. The latter with finer shape information serves as additional guidance to relieve the heavy dependence on the learnable prototype in the segmentation head. To evaluate the effectiveness of SPM, we conduct experiments on three challenging public datasets. And our proposed model achieves state-of-the-art performance. Furthermore, SPM can serve as a plug-and-play structure into classic CNNs and Transformer-based backbones, facilitating the segmentation task on different datasets. Source codes are available at <uri>https://github.com/AlexYouXin/Explicit-Shape-Priors</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"927-940"},"PeriodicalIF":0.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating Eye Tracking With Grouped Fusion Networks for Semantic Segmentation on Mammogram Images","authors":"Jiaming Xie;Qing Zhang;Zhiming Cui;Chong Ma;Yan Zhou;Wenping Wang;Dinggang Shen","doi":"10.1109/TMI.2024.3468404","DOIUrl":"10.1109/TMI.2024.3468404","url":null,"abstract":"Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences. We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"868-879"},"PeriodicalIF":0.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}