Current computer-aided drug design最新文献

筛选
英文 中文
Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Gynostemma pentaphylla against Acute Pharyngitis.
Current computer-aided drug design Pub Date : 2025-02-04 DOI: 10.2174/0115734099324793250116133159
Juan Zhong, Xiaozhong Wu, Chunxi Huang, Yongqiang Li, Min Huang, Liuyan Xu, Jianfeng Lu, Lili Pang, Qiuju Huang, Jing Chen
{"title":"Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Gynostemma pentaphylla against Acute Pharyngitis.","authors":"Juan Zhong, Xiaozhong Wu, Chunxi Huang, Yongqiang Li, Min Huang, Liuyan Xu, Jianfeng Lu, Lili Pang, Qiuju Huang, Jing Chen","doi":"10.2174/0115734099324793250116133159","DOIUrl":"https://doi.org/10.2174/0115734099324793250116133159","url":null,"abstract":"<p><strong>Background: </strong>Acute pharyngitis (AP) is a prevalent ailment. Gynostemma pentaphylla (GP), a traditional Chinese medicine (TCM), may treat AP due to its anti-tumor and anti-inflammatory properties, but this remains unexplored.</p><p><strong>Methods: </strong>This study utilized the TCMSP and Swiss Target Prediction databases to analyze GP's chemical composition and target proteins. The Genecards database was used to identify targets relevant to AP. A PPI network diagram of drug-disease intersection targets was created using the STRING database, and Cytoscape was utilized to create a network visualization diagram of \"GP active components-targets-AP\" in order to determine key active components of GP in treating AP. Gene ontology (GO) and biological pathway (KEGG) enrichment analyses were conducted on targets in the David database. Molecular docking verification of key targets and components was performed using AutoDock Vina software. In animal experiments, a rat model of AP was induced by a 15% concentrated ammonia solution, and HE staining was conducted to observe histopathological changes in the rat pharynx after intragastric administration of Houyanqing. ELISA was used to detect expression levels of serum interleukin-1-beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α).</p><p><strong>Results: </strong>A total of 18 active ingredients were screened from GP, among which Ruvoside _ qt, Rhamnazin, 3 ' -methyleriodictyol, and sitosterol were five key active ingredients. The key targets involved EGFR, STAT3, MAPK3, SRC, AKT1, etc. KEGG enrichment analysis showed that GP mainly acted on Pathways in cancer, P13K-AKT signaling Pathways, JAK-STAT signaling pathways, and other signaling pathways. Molecular docking results showed that four core compounds and five key targets met the energy matching. Animal experiments showed that compared with the normal group, the expression levels of IL-1β, IL-6, and TNF-α in the AP model group were significantly up-regulated (P < 0.05). In addition, compared with the model group, intragastric administration of the dexamethasone group and gypenosides group could alleviate the up-regulation of inflammatory factors in model rats, and the levels of IL-1β, IL-6, and TNF-α were decreased (P < 0.05).</p><p><strong>Conclusion: </strong>This study predicted the possible targets of GP in the treatment of AP through network pharmacology. The results suggest that gypenosides may inhibit the expression of inflammatory factors by regulating Pathways in cancer, P13K-AKT, and JAK-STAT signaling pathways to treat AP.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143367050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qi-Gui-Jian-Gu Decoction Accelerates Osteogenesis and Fracture Healing by Activating the Wnt/β-Catenin Signaling Pathway.
Current computer-aided drug design Pub Date : 2025-02-04 DOI: 10.2174/0115734099345441250121101413
Siluo Wu, Jiayang Wang, Ziheng Luo, Bifeng Li, Liangliang Xu, Liuchao Hu, Rihe Hu
{"title":"Qi-Gui-Jian-Gu Decoction Accelerates Osteogenesis and Fracture Healing by Activating the Wnt/β-Catenin Signaling Pathway.","authors":"Siluo Wu, Jiayang Wang, Ziheng Luo, Bifeng Li, Liangliang Xu, Liuchao Hu, Rihe Hu","doi":"10.2174/0115734099345441250121101413","DOIUrl":"https://doi.org/10.2174/0115734099345441250121101413","url":null,"abstract":"<p><strong>Background: </strong>Qi-Gui-Jian-Gu decoction (QGJG), as a clinical empirical formula, has clinical benefits in promoting bone formation, but the underlying mechanism for its application in treating fractures has not been investigated.</p><p><strong>Methods: </strong>The potential therapeutic target and signaling pathway of QGJG for treating fractures were analyzed by network pharmacology. In vitro, we used bone marrow mesenchymal stem cells (MSCs) to evaluate osteogenic differentiation and mineralization by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence staining. In vivo, the 8w male SPF C57BL/6J mouse femoral fracture model was constructed, and the therapeutic effects of QGJG were evaluated.</p><p><strong>Results: </strong>By network pharmacology analysis, we found that glycogen synthase kinase 3 beta (GSK3β) was a potential therapeutic target of QGJG for treating fractures. The canonical Wnt signaling pathway was selected as the potential molecular mechanism. QGJG was confirmed to upregulate the mRNA levels of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), thereby promoting osteogenic differentiation and mineralization. Mechanistically, QGJG inhibited GSK3β while increasing p-Ser9-GSK3β to increase β-catenin protein expression and its nuclear translocation, implying the activation of the canonical Wnt signaling pathway. In vivo, QGJG administration promoted fracture healing, as demonstrated by the up-regulation of OPN and Osx, and accelerated the progression of ossification at 2 and 3 weeks after surgery.</p><p><strong>Conclusion: </strong>QGJG promotes osteogenic differentiation and fracture healing by activating the canonical Wnt pathway.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143367062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Study on Sedative and Hypnotic Effects of Crude and Parched Semen Ziziphi Spinosae: Integration of Network Pharmacology and In Vivo Pharmacological Evaluation.
Current computer-aided drug design Pub Date : 2025-01-22 DOI: 10.2174/0115734099281920240730051328
Jing Xia, Ming Cai, Bo Xu, Guang-Jing Xie, Ping Wang
{"title":"Comparative Study on Sedative and Hypnotic Effects of Crude and Parched Semen Ziziphi Spinosae: Integration of Network Pharmacology and In Vivo Pharmacological Evaluation.","authors":"Jing Xia, Ming Cai, Bo Xu, Guang-Jing Xie, Ping Wang","doi":"10.2174/0115734099281920240730051328","DOIUrl":"https://doi.org/10.2174/0115734099281920240730051328","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to investigate the medicinal properties of SZS before and after processing and provide novel insights into its potential for treating insomnia.</p><p><strong>Methods: </strong>This study employed the network pharmacology platform to gather information on the chemical composition of SZS, human targets, genes, molecular networks, and pathways associated with insomnia treatment using SZS. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) was utilized to analyze the chemical profiles of crude SZS, parched SZS, and their combined decoction. The effects of different SZS products on p-chlorophenylalanine-induced insomnia mice were evaluated through pentobarbital-induced sleep tests, behavioral analyses, examination of brain tissue-related mRNA levels, and measurement of plasma neurotransmitters, aiming to explore the sedative and hypnotic effects of various SZS products.</p><p><strong>Results: </strong>SZS was found to contain a total of 47 genes, including 22 target genes associated with insomnia. These genes may contribute to the sedative and hypnotic effects through 9 related pathways and 69 biological processes. The active components of SZS remained consistent before and after processing. Jujuboside B was found in higher concentrations in crude SZS, while jujuboside A was more abundant in parched SZS. Additionally, SZS exhibited reduced locomotor activity in mice, enhanced the hypnotic effect of pentobarbital sodium, and decreased the levels of acetylcholinesterase, α-1B adrenergic receptor, and solute carrier family 6 member 4 mRNA in the cortex and hippocampus of mice. The levels of acetylcholine, choline acetyltransferase, 5-hydroxyindoleacetic acid, and glutamate in plasma increased, with the hypnotic effect being proportional to the dosage of the drug.</p><p><strong>Conclusion: </strong>SZS demonstrates sedative and hypnotic effects, potentially mediated by its influence on neurotransmitter levels and related receptors within the central nervous system. There was a slight variation in regulatory capabilities before and after SZS processing, with the combined decoction of crude and parched SZS exhibiting a more pronounced effect, particularly at higher dosages.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Evaluation of Punica granatum Leaf Phytochemicals against Multi-drug Resistant E. coli: Molecular Docking, ADMET, MD Simulation, and DFT Studies. 石榴叶植物化学物质对抗多重耐药大肠杆菌的计算评价:分子对接、ADMET、MD模拟和DFT研究。
Current computer-aided drug design Pub Date : 2025-01-09 DOI: 10.2174/0115734099343126241105102839
Shivam Mishra, Shristi Modanwal, Prabhat Kumar, Ashutosh Mishra, Nidhi Mishra
{"title":"Computational Evaluation of Punica granatum Leaf Phytochemicals against Multi-drug Resistant E. coli: Molecular Docking, ADMET, MD Simulation, and DFT Studies.","authors":"Shivam Mishra, Shristi Modanwal, Prabhat Kumar, Ashutosh Mishra, Nidhi Mishra","doi":"10.2174/0115734099343126241105102839","DOIUrl":"https://doi.org/10.2174/0115734099343126241105102839","url":null,"abstract":"<p><strong>Introduction: </strong>Multidrug-resistant (MDR) E. coli presents a significant challenge in clinical settings, necessitating the exploration of novel therapeutic agents. Phytochemicals from Punica granatum (pomegranate) leaves have shown potential antibacterial properties. This study aims to identify and evaluate the efficacy of these phytochemicals against MDR E. coli.</p><p><strong>Objectives: </strong>This study aims to identify and evaluate the efficacy of most potential phytochemical of Punica granatum leaf against MDR E. coli. through molecular docking, adme, toxicity, molecular dynamic simulation, MMPBSA and DFT approaches.</p><p><strong>Methods: </strong>We performed molecular docking of 11 phytochemicals from the IMPPAT database with four MDR E. coli targets: 1AJ6, 1FJ8, 4BJP, and 6BU3. Granatin B demonstrated the best binding affinity and was further analyzed. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analyses were conducted to assess its pharmacokinetic properties and safety profile. Molecular Dynamics (MD) simulations were performed to evaluate the stability of Granatin B with the targets. Finally, density functional theory (DFT) analysis was carried out to understand the electronic properties and reactivity of Granatin B.</p><p><strong>Results: </strong>Granatin B exhibited the highest binding affinity among the 11 phytochemicals, indicating strong potential as an inhibitor of MDR E. coli. ADME analysis revealed favorable pharmacokinetic properties and toxicity analysis confirmed that Granatin B is non-toxic. MD simulations showed stable interactions between Granatin B and all four targets. DFT analysis provided insights into the electronic properties and reactive sites of Granatin B, supporting its potential mechanism of action.</p><p><strong>Conclusion: </strong>Granatin B from Punica granatum leaves is a promising candidate for treating MDR E. coli infections. The integration of molecular docking, ADME, toxicity, MD simulations, and DFT analysis underscores its therapeutic potential and paves the way for further experimental validation and development as a novel antibacterial agent.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a ceRNA Network Regulating Malignant Transformation of Isocitrate Dehydrogenase Mutant Astrocytoma: An Integrated Bioinformatics Study. 调控异柠檬酸脱氢酶突变星形细胞瘤恶性转化的ceRNA网络的鉴定:一项综合生物信息学研究。
Current computer-aided drug design Pub Date : 2025-01-06 DOI: 10.2174/0115734099293010240810181446
Yaqian Cui, Hongquan Zheng, Zhengwei Zhou, Suo Liu, Mingxue Shen, Runze Qiu, Xiong Zhang, Yingbin Li, Hongwei Fan
{"title":"Identification of a ceRNA Network Regulating Malignant Transformation of Isocitrate Dehydrogenase Mutant Astrocytoma: An Integrated Bioinformatics Study.","authors":"Yaqian Cui, Hongquan Zheng, Zhengwei Zhou, Suo Liu, Mingxue Shen, Runze Qiu, Xiong Zhang, Yingbin Li, Hongwei Fan","doi":"10.2174/0115734099293010240810181446","DOIUrl":"https://doi.org/10.2174/0115734099293010240810181446","url":null,"abstract":"<p><strong>Introduction: </strong>Astrocytoma is the most common glioma, accounting for about 65% of glioblastoma. Its malignant transformation is also one of the important causes of patient mortality, making it the most prevalent and difficult to treat in primary brain tumours. However, little is known about the underlying mechanisms of this transformation.</p><p><strong>Methods: </strong>In this study, we established a ceRNA network to screen out the potential regulatory pathways involved in the malignant transformation of IDH-mutant astrocytomas. Firstly, the Chinese Glioma Genome Atlas (CGGA) was employed to compare the expression levels of the differential expressed genes (DEGs) in astrocytomas. Then, the ceRNA-regulated network was constructed based on the interaction of lncRNA-miRNA-mRNA. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore the main functions of the differentially expressed genes. COX regression analysis and log-rank test were combined to screen the ceRNA network further. In addition, quantitative real-time PCR (qRT-PCR) was conducted to identify the potential regulatory mechanisms of malignant transformation in IDH-mutant astrocytoma. We constructed a ceRNA network with 34 lncRNAs, 29 miRNAs, and 71 mRNAs.</p><p><strong>Results: </strong>GO and KEGG analyses results suggested that DEGs were associated with tumor-associated molecular functions and pathways. In addition, we screened two ceRNA regulatory networks using Cox regression analysis and log-rank test. QRT-PCR assay identified the NAA11/hsa- miR-142-3p/GS1-39E22.2 regulatory axis of the ceRNA network to be associated with the malignant transformation of IDH-mutant astrocytoma.</p><p><strong>Conclusion: </strong>The discovery of this mechanism deepens our understanding of the molecular mechanisms of malignant transformation in astrocytomas and provides new perspectives for exploring glioma progression and targeted therapies.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting PD-1 in Squamous Cell Carcinoma: Flavonoid-based Therapeutics Unveiled through in silico and in vitro Approaches. 在鳞状细胞癌中靶向PD-1:通过计算机和体外方法揭示的基于类黄酮的治疗方法。
Current computer-aided drug design Pub Date : 2025-01-06 DOI: 10.2174/0115734099312638240830060525
Neha Sharma, Rupa Mazumder, Pallavi Rai, Abhijit Debnath
{"title":"Targeting PD-1 in Squamous Cell Carcinoma: Flavonoid-based Therapeutics Unveiled through in silico and in vitro Approaches.","authors":"Neha Sharma, Rupa Mazumder, Pallavi Rai, Abhijit Debnath","doi":"10.2174/0115734099312638240830060525","DOIUrl":"https://doi.org/10.2174/0115734099312638240830060525","url":null,"abstract":"<p><strong>Introduction: </strong>Squamous cell carcinoma is a major public health concern, with traditional treatments such as surgery, chemotherapy, and radiation therapy frequently resulting in significant side effects. Immunotherapy targeting checkpoints such as PD-1, CTLA-4, and B7- H3 provides a more specific approach but incurs high costs due to monoclonal antibodies.</p><p><strong>Aim and objective: </strong>This study aims to investigate the potential of natural flavonoids as lowtoxicity, small molecule-based alternatives targeting the PD-1 immunological checkpoint for SCC treatment. It aims to identify and evaluate flavonoid compounds from the NPACT database for their efficacy through in silico and in vitro screenings.</p><p><strong>Method: </strong>Employing a comprehensive in silico approach, including SBVS, Drug Likeness, Toxicity Prediction, Consensus Molecular Docking, DFT, and 300 ns MD simulations, this study screened for flavonoids with high affinity to PD-1. Identified lead molecules were further validated through in-vitro assays, such as NRU, to assess their anticancer activities.</p><p><strong>Result: </strong>The flavonoid NPACT01407 showed high affinity for PD-1, favorable drug-like properties, low toxicity, and effective stability at the active site, along with an optimal IC50 value, highlighting its potential as an effective immunotherapeutic agent for SCC.</p><p><strong>Conclusion: </strong>The study highlights the potential of the flavonoid molecule NPACT01407 as a promising candidate for the immunotherapeutic treatment of Squamous cell carcinoma. These findings provide a solid basis for further experimental validation and drug development efforts, suggesting a novel, less toxic, and cost-effective approach to cancer treatment.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Mechanisms of Sanguinarine in the Treatment of Osteoporosis by Integrating Network Pharmacology Analysis and Deep Learning Technology. 通过整合网络药理学分析和深度学习技术,探索桑吉那林治疗骨质疏松症的机制。
Current computer-aided drug design Pub Date : 2025-01-01 DOI: 10.2174/0115734099282231240214095025
Yonghong Tang, Daoqing Zhou, Fengping Gan, Zhicheng Yao, Yuqing Zeng
{"title":"Exploring the Mechanisms of Sanguinarine in the Treatment of Osteoporosis by Integrating Network Pharmacology Analysis and Deep Learning Technology.","authors":"Yonghong Tang, Daoqing Zhou, Fengping Gan, Zhicheng Yao, Yuqing Zeng","doi":"10.2174/0115734099282231240214095025","DOIUrl":"10.2174/0115734099282231240214095025","url":null,"abstract":"<p><strong>Background: </strong>Sanguinarine (SAN) has been reported to have antioxidant, antiinflammatory, and antimicrobial activities with potential for the treatment of osteoporosis (OP).</p><p><strong>Objective: </strong>This work purposed to unravel the molecular mechanisms of SAN in the treatment of OP.</p><p><strong>Methods: </strong>OP-related genes and SAN-related targets were predicted from public databases. Differential expression analysis and VennDiagram were adopted to detect SAN-related targets against OP. Protein-protein interaction (PPI) network was served for core target identification. Molecular docking and DeepPurpose algorithm were further adopted to investigate the binding ability between core targets and SAN. Gene pathway scoring of these targets was calculated utilizing gene set variation analysis (GSVA). Finally, we explored the effect of SAN on the expressions of core targets in preosteoblastic MC3T3-E1 cells.</p><p><strong>Results: </strong>A total of 21 candidate targets of SAN against OP were acquired. Furthermore, six core targets were identified, among which CASP3, CTNNB1, and ERBB2 were remarkably differentially expressed in OP and healthy individuals. The binding energies of SAN with CASP3, CTNNB1, and ERBB2 were -6, -6.731, and -7.162 kcal/mol, respectively. Moreover, the GSVA scores of the Wnt/calcium signaling pathway were significantly lower in OP cases than in healthy individuals. In addition, the expression of CASP3 was positively associated with Wnt/calcium signaling pathway. CASP3 and ERBB2 were significantly lower expressed in SAN group than in DMSO group, whereas the expression of CTNNB1 was in contrast.</p><p><strong>Conclusion: </strong>CASP3, CTNNB1, and ERBB2 emerge as potential targets of SAN in OP prevention and treatment.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"83-93"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms Underlying the Attenuating Effects of Bugantang on Liver Fibrosis based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. 基于网络药理学、分子对接、分子动力学模拟的补肝汤抗肝纤维化机制研究
Current computer-aided drug design Pub Date : 2024-12-02 DOI: 10.2174/0115734099335133241030110644
Taojing Zhang, Jia Chang, Zengle Zheng, Guobi Chen, Yiping Wu, Jinxiang Xiang, Jing Chen
{"title":"Mechanisms Underlying the Attenuating Effects of Bugantang on Liver Fibrosis based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation.","authors":"Taojing Zhang, Jia Chang, Zengle Zheng, Guobi Chen, Yiping Wu, Jinxiang Xiang, Jing Chen","doi":"10.2174/0115734099335133241030110644","DOIUrl":"https://doi.org/10.2174/0115734099335133241030110644","url":null,"abstract":"<p><strong>Background: </strong>Liver fibrosis, a chronic liver disease, threatens people's health, increases the burden of healthcare, and currently lacks effective treatment measures. Bugantang (BGT) is a traditional Chinese herbal prescription from Jin Kui Yi with promising potential for treating liver fibrosis. Despite this potential, the efficacy and mechanism for treating liver fibrosis remain unclear.</p><p><strong>Objective: </strong>To primarily prove the efficacy, predict the active components of BGT, and explore the mechanism of BGT on liver fibrosis.</p><p><strong>Methods: </strong>The liver condition of CCL4-induced mice was examined using hematoxylin and eosin staining. The targets and active compounds of BGT were sourced from HERB and TCMSP databases, while the targets related to liver fibrosis were acquired from DisGeNET, Gene Expression Omnibus, and GeneCards databases. The core targets were identified, and the network of protein-protein interactions was established. KEGG and GO analyses were performed on DAVID. Molecular docking and molecular dynamics simulations assessed the active components' interactions with potential targets.</p><p><strong>Results: </strong>A total of 215 targets and 152 active compounds were identified for BGT. The network analysis identified kaempferol, quercetin, 2-(2,4-dihydroxyphenyl)-7-hydroxy-4Hchromen- 4-one, sitosterol, naringenin, adenosine, plo, and beta-sitosterol as potential key compounds, and AKT1, MMP9, SRC, TNF, ESR1, NF-κB, and PPARG as potential key targets. KEGG and GO analyses revealed that the therapeutic effect of BGT on liver fibrosis may be associated with the PI3K-AKT and MAPK signaling pathways, as well as cell apoptosis, protein phosphorylation, and inflammation. Molecular docking demonstrated high-affinity binding of the identified targets to the active compounds. Additionally, molecular dynamics simulation further confirmed that the bindings of AKT1-beta-sitosterol and MMP9-quercetin exhibited good stability.</p><p><strong>Conclusions: </strong>The potential of BGT in alleviating liver fibrosis may be attributed to a combination of various active compounds, targets, and pathways. These results could support the use of BGT in treating liver fibrosis and facilitate the development of new drug candidates for this condition.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network Pharmacology and In Vivo Experimental Verification of the Mechanism of the Qing'e Pill for Treating Intervertebral Disc Degeneration. 清娥丸治疗椎间盘退变机制的网络药理学及体内实验验证。
Current computer-aided drug design Pub Date : 2024-12-02 DOI: 10.2174/0115734099356426241119051916
Hui Jin, Huaiyu Ma, Jie Wu, Ruizhe Wu, Haoran Xu, Weixing Chen, Linghui Li, Jingqi Zeng, Fan Wang
{"title":"Network Pharmacology and In Vivo Experimental Verification of the Mechanism of the Qing'e Pill for Treating Intervertebral Disc Degeneration.","authors":"Hui Jin, Huaiyu Ma, Jie Wu, Ruizhe Wu, Haoran Xu, Weixing Chen, Linghui Li, Jingqi Zeng, Fan Wang","doi":"10.2174/0115734099356426241119051916","DOIUrl":"https://doi.org/10.2174/0115734099356426241119051916","url":null,"abstract":"<p><strong>Objective: </strong>The Qing'e Pill (QEP) is widely used to alleviate low back pain and sciatica caused by Intervertebral Disc Degeneration (IDD). However, its active components, key targets, and molecular mechanisms are not fully understood. The aim of this study is to elucidate the molecular mechanisms through which the QEP improves IDD using database mining techniques.</p><p><strong>Methods: </strong>Active components and candidate targets of the QEP were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and the Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine. IDD-related targets were obtained from the GeneCards database, and liver- and kidney-specific genes were retrieved from the BioGPS database. The intersection of these candidate targets was analyzed to identify potential targets for the QEP in IDD. A protein-protein interaction network analysis was performed using STRING and Cytoscape 3.7.2 software. Core targets were further analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking was used to assess the binding affinity of active components to candidate targets, and animal experiments were conducted for validation.</p><p><strong>Results: </strong>We identified 65 potentially active components of the QEP that corresponded to 1,093 candidate targets, 2,108 IDD-related targets, and 1,113 liver- and kidney-specific genes. Key components included quercetin, berberine, isorhamnetin, and emodin. The primary candidate targets were Wnt5A, CTNNB1, IL-1β, MAPK14, MMP9, and MMP3. The GO and KEGG analyses revealed the involvement of these targets in Wnt signaling, TNF signaling, Wnt receptor activation, Frizzled binding, and Wnt-protein interactions. Molecular docking showed strong binding between these components and their targets. Animal experiments demonstrated that the QEP treatment significantly reduced the expression of Wnt5A, CTNNB1, IL-1β, MAPK14, MMP9, and MMP3 at high, medium, and low doses compared with the model group.</p><p><strong>Conclusion: </strong>The QEP alleviated IDD by modulating the Wnt/MAPK/MMP signaling pathways and reducing the release and activation of key factors.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xuebijing Exerts Protective Effects on Myocardial Cells by Upregulating TRIM16 and Inhibiting Oxidative Stress and Apoptosis. 血必净通过上调TRIM16抑制氧化应激和细胞凋亡对心肌细胞具有保护作用。
Current computer-aided drug design Pub Date : 2024-12-02 DOI: 10.2174/0115734099318323241122184120
Xiaoyan Meng, Xinming Yan, Peng Xue, Zhaoqing Xi
{"title":"Xuebijing Exerts Protective Effects on Myocardial Cells by Upregulating TRIM16 and Inhibiting Oxidative Stress and Apoptosis.","authors":"Xiaoyan Meng, Xinming Yan, Peng Xue, Zhaoqing Xi","doi":"10.2174/0115734099318323241122184120","DOIUrl":"https://doi.org/10.2174/0115734099318323241122184120","url":null,"abstract":"<p><strong>Objective: </strong>This study utilized transcriptomic sequencing combined with cellular and animal models to explore the potential mechanisms of Xuebijing in treating sepsis-induced myocardial dysfunction, also known as sepsis-induced myocardial injury.</p><p><strong>Methods: </strong>We investigated potential targets and regulatory mechanisms of XBJ injection using network pharmacology and RNA sequencing. The effects of XBJ on oxidative stress and apoptosis levels in human cardiac myocytes (AC16) and C57BL/6 mice exposed to lipopolysaccharide (LPS) were evaluated by Enzyme-Linked Immunosorbent Assay (ELISA), fluorescent probe, Fluorescent Quantitative Polymerase Chain Reaction (qPCR), Western Blot, Transmission Electron Microscopy, oxidative stress-related indicators detection kit, flow cytometry, and Immunohistochemistry (IHC).</p><p><strong>Results: </strong>First, it was verified that XBJ can reduce the deformation of AC16 cardiomyocytes induced by LPS and the production and secretion of ROS (P <0.01). The transcriptome sequencing results showed that the TRIM16 gene was significantly increased after XBJ treatment, and the data of KEGG and GO analyses demonstrated that XBJ could inhibit the pathway expression of oxidative stress damage in AC16 cells, and PCR verified that XBJ could indeed increase the expression level of TRIM16 gene in AC16 cells (P <0.01). Basic animal and cell experiments showed that LPS could inhibit the expression of TRIM16 and NRF2 in cardiomyocytes (P <0.05) and promote the expression of Keap1 (P <0.01), while XBJ could significantly upregulate the expression levels of TRIM16 and NRF2 (P <0.01) and inhibit the expression of Keap1 (P <0.01), thereby affecting the expression levels of downstream proinflammatory cytokines and alleviating LPS-induced oxidative stress damage. In addition, XBJ also inhibited the expression of the pro-apoptotic proteins Bax and c-caspase3 (P <0.01), promoted the expression of the anti-apoptotic protein Bcl2 (P <0.01), and reduced LPS-induced apoptosis by upregulating TRIM16.</p><p><strong>Conclusion: </strong>Our comprehensive data demonstrated that TRIM16 is a key gene in the therapeutic action of Xuebijing in sepsis-induced myocardial dysfunction, protecting myocardial cells from injury through antioxidative stress and anti-apoptotic mechanisms.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信