Biochimica et biophysica acta. Reviews on cancer最新文献

筛选
英文 中文
Comprehensive insights into human papillomavirus and cervical cancer: Pathophysiology, screening, and vaccination strategies.
Biochimica et biophysica acta. Reviews on cancer Pub Date : 2024-09-28 DOI: 10.1016/j.bbcan.2024.189192
Ying Liu, Hao Ai
{"title":"Comprehensive insights into human papillomavirus and cervical cancer: Pathophysiology, screening, and vaccination strategies.","authors":"Ying Liu, Hao Ai","doi":"10.1016/j.bbcan.2024.189192","DOIUrl":"https://doi.org/10.1016/j.bbcan.2024.189192","url":null,"abstract":"<p><p>This article provides an in-depth review of the Human Papillomavirus (HPV), a predominant etiological factor in cervical cancer, exploring its pathophysiology, epidemiology, and mechanisms of oncogenesis. We examine the role of proteins, DNA methylation markers, and non-coding RNAs as predictive biomarkers in cervical cancer, highlighting their potential in refining diagnostic and prognostic practices. The evolution and efficacy of cervical cancer screening methods, including the Papanicolaou smear, HPV testing, cytology and HPV test, and colposcopy techniques, are critically analyzed. Furthermore, the article delves into the current landscape and future prospects of prophylactic HPV vaccines and therapeutic vaccines, underscoring their significance in the prevention and potential treatment of HPV-related diseases. This comprehensive review aims to synthesize recent advances and ongoing challenges in the field, providing a foundation for future research and clinical strategies in the prevention and management of cervical cancer.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer.
Biochimica et biophysica acta. Reviews on cancer Pub Date : 2024-09-27 DOI: 10.1016/j.bbcan.2024.189189
Solmaz Mohamadi, Parisa Mehrasa, Bahareh Mehramuz, Sepehr Kobravi, Mohammad Taghizadieh, Arash Salmaninejad, Mobina Bayat, Javid Sadri Nahand
{"title":"The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer.","authors":"Solmaz Mohamadi, Parisa Mehrasa, Bahareh Mehramuz, Sepehr Kobravi, Mohammad Taghizadieh, Arash Salmaninejad, Mobina Bayat, Javid Sadri Nahand","doi":"10.1016/j.bbcan.2024.189189","DOIUrl":"https://doi.org/10.1016/j.bbcan.2024.189189","url":null,"abstract":"<p><p>The tumor microenvironment (TME) harbors a hidden universe of interactions that profoundly shape the behavior of head and neck cancers (HNCs). HNCs are not merely localized afflictions; they constitute a pressing global health crisis that impacts millions, frequently resulting in severe prognoses due to late-stage diagnosis and intrinsic resistance to conventional therapies. In this intricate interplay, cancer cells function as strategic players, adeptly manipulating their microenvironment to foster proliferation, evade immune detection, and withstand therapeutic interventions. Central to this dynamic play are exosomes, the enigmatic pawns of cellular communication, carrying vital messages across the board. This review elucidates the multifaceted roles of exosomes within the TME, highlighting their capacity to transmit critical signals that not only promote tumor progression but also modulate immune responses, ultimately playing a crucial role in the evolving narrative of HNC. Our insights aim to catalyze further research and exploration into exosome-targeted therapies, potentially transforming the landscape of HNC treatment and improving clinical outcomes in this formidable battle against cancer.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The metabolic crosstalk of cancer-associated fibroblasts and tumor cells: Recent advances and future perspectives.
Biochimica et biophysica acta. Reviews on cancer Pub Date : 2024-09-26 DOI: 10.1016/j.bbcan.2024.189190
Bing Xia, Liqing Qiu, Jing Yue, Jingxing Si, Hongfang Zhang
{"title":"The metabolic crosstalk of cancer-associated fibroblasts and tumor cells: Recent advances and future perspectives.","authors":"Bing Xia, Liqing Qiu, Jing Yue, Jingxing Si, Hongfang Zhang","doi":"10.1016/j.bbcan.2024.189190","DOIUrl":"https://doi.org/10.1016/j.bbcan.2024.189190","url":null,"abstract":"<p><p>Tumor cells grow in a microenvironment with a lack of nutrients and oxygen. Cancer-associated fibroblasts (CAFs) as one major component of tumor microenvironment have strong ability to survive under stressful conditions through metabolic remodelling. Furthermore, CAFs are educated by tumor cells and help them adapt to the hostile microenvironment through their metabolic communication. By inducing catabolism, CAFs release nutrients into the microenvironment which are taken up by tumor cells to satisfy their metabolic requirements. Furthermore, CAFs can recycle toxic metabolic wastes produced by cancer cells into energetic substances, allowing cancer cells to undergo biosynthesis. Their metabolic crosstalk also enhances CAFs' pro-tumor phenotype and reshape the microenvironment facilitating tumor cells' metastasis and immune escape. In this review, we have analyzed the effect and mechanisms of metabolic crosstalk between tumor cells and CAFs. We also analyzed the future perspectives in this area from the points of CAFs heterogeneity, spatial metabonomics and patient-derived tumor organoids (PDOs). These information may deepen the knowledge of tumor metabolism regulated by CAFs and provide novel insights into the development of metabolism-based anti-cancer strategies.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination therapies with Wnt signaling inhibition: A better choice for prostate cancer treatment.
Biochimica et biophysica acta. Reviews on cancer Pub Date : 2024-09-25 DOI: 10.1016/j.bbcan.2024.189186
Yifan Hou, Zhenhua Zhao, Pan Li, Yujia Cao, Yi Zhang, Changsheng Guo, Xiaobo Nie, Junqing Hou
{"title":"Combination therapies with Wnt signaling inhibition: A better choice for prostate cancer treatment.","authors":"Yifan Hou, Zhenhua Zhao, Pan Li, Yujia Cao, Yi Zhang, Changsheng Guo, Xiaobo Nie, Junqing Hou","doi":"10.1016/j.bbcan.2024.189186","DOIUrl":"https://doi.org/10.1016/j.bbcan.2024.189186","url":null,"abstract":"<p><p>The intractability and high mortality rate of castration-resistant prostate cancer (CRPC) remain the most challenging problems in the field of prostate cancer (PCa). Emerging evidence has shown that the dysregulation of Wnt signaling pathways, which are highly conserved cascades that regulate embryonic development and maintain tissue homeostasis, is involved in various stages of PCa occurrence and progression. In this review, we systemically discuss the mechanisms by which the androgen receptor (AR) signaling pathway and Wnt signaling pathways participate in the occurrence of PCa and its progression to CRPC. Specifically, we elaborate on how Wnt signaling pathways induce the malignant transformation of prostate cells, promote the malignant progression of PCa and establish an immunosuppressive prostate tumor microenvironment through interaction with the AR pathway or in an AR-independent manner. We also discuss how Wnt signaling pathways enhances the stemness characteristics of prostate cancer stem cells (PCSCs) to induce the occurrence and metastasis of CPPC. Additionally, we discuss the latest progress in the use of different types of drugs that inhibit the Wnt signaling pathways in the treatment of PCa. We believe that the combination of Wnt signaling-based drugs with endocrine and other therapies is necessary and may enhance the clinical efficacy in the treatment of all types of PCa.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence.
Biochimica et biophysica acta. Reviews on cancer Pub Date : 2024-09-24 DOI: 10.1016/j.bbcan.2024.189185
Fatemeh Moosavi, Bahareh Hassani, Somayeh Nazari, Luciano Saso, Omidreza Firuzi
{"title":"Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence.","authors":"Fatemeh Moosavi, Bahareh Hassani, Somayeh Nazari, Luciano Saso, Omidreza Firuzi","doi":"10.1016/j.bbcan.2024.189185","DOIUrl":"https://doi.org/10.1016/j.bbcan.2024.189185","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. 泛素-蛋白酶体系统对肿瘤休眠和复发的调控。
Biochimica et biophysica acta. Reviews on cancer Pub Date : 2024-07-01 Epub Date: 2024-05-16 DOI: 10.1016/j.bbcan.2024.189119
Bashar A Alhasan, Alexey V Morozov, Irina V Guzhova, Boris A Margulis
{"title":"The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence.","authors":"Bashar A Alhasan, Alexey V Morozov, Irina V Guzhova, Boris A Margulis","doi":"10.1016/j.bbcan.2024.189119","DOIUrl":"10.1016/j.bbcan.2024.189119","url":null,"abstract":"<p><p>Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. 探讨溶瘤病毒与癌症免疫疗法融合的综述:癌症治疗领域的创新策略。
Biochimica et biophysica acta. Reviews on cancer Pub Date : 2024-07-01 Epub Date: 2024-05-14 DOI: 10.1016/j.bbcan.2024.189110
Soumyadeep Chattopadhyay, Rudradeep Hazra, Arijit Mallick, Sakuntala Gayen, Souvik Roy
{"title":"A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment.","authors":"Soumyadeep Chattopadhyay, Rudradeep Hazra, Arijit Mallick, Sakuntala Gayen, Souvik Roy","doi":"10.1016/j.bbcan.2024.189110","DOIUrl":"10.1016/j.bbcan.2024.189110","url":null,"abstract":"<p><p>Oncolytic viruses (OVs) are increasingly recognized as potent tools in cancer therapy, effectively targeting and eradicating oncogenic conditions while sparing healthy cells. They enhance antitumor immunity by triggering various immune responses throughout the cancer cycle. Genetically engineered OVs swiftly destroy cancerous tissues and activate the immune system by releasing soluble antigens like danger signals and interferons. Their ability to stimulate both innate and adaptive immunity makes them particularly attractive in cancer immunotherapy. Recent advancements involve combining OVs with other immune therapies, yielding promising results. Transgenic OVs, designed to enhance immunostimulation and specifically target cancer cells, further improve immune responses. This review highlights the intrinsic mechanisms of OVs and underscores their synergistic potential with other immunotherapies. It also proposes strategies for optimizing armed OVs to bolster immunity against tumors.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SNARE proteins: Core engines of membrane fusion in cancer. SNARE 蛋白:癌症中膜融合的核心引擎
Biochimica et biophysica acta. Reviews on cancer Pub Date : 2024-07-01 DOI: 10.1016/j.bbcan.2024.189148
Hongyi Liu, Ruiyue Dang, Wei Zhang, Jidong Hong, Xuejun Li
{"title":"SNARE proteins: Core engines of membrane fusion in cancer.","authors":"Hongyi Liu, Ruiyue Dang, Wei Zhang, Jidong Hong, Xuejun Li","doi":"10.1016/j.bbcan.2024.189148","DOIUrl":"https://doi.org/10.1016/j.bbcan.2024.189148","url":null,"abstract":"<p><p>Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信