Abdelrahman M Elsayed, Muaiad Kittaneh, Colleen M Cebulla, Mohamed H Abdel-Rahman
{"title":"Corrigendum to \"An overview of BAP1 biological functions and current therapeutics\" [BBA - Reviews on Cancer 1880 (2025) 189267].","authors":"Abdelrahman M Elsayed, Muaiad Kittaneh, Colleen M Cebulla, Mohamed H Abdel-Rahman","doi":"10.1016/j.bbcan.2025.189301","DOIUrl":"https://doi.org/10.1016/j.bbcan.2025.189301","url":null,"abstract":"","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":" ","pages":"189301"},"PeriodicalIF":0.0,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bashar A Alhasan, Alexey V Morozov, Irina V Guzhova, Boris A Margulis
{"title":"The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence.","authors":"Bashar A Alhasan, Alexey V Morozov, Irina V Guzhova, Boris A Margulis","doi":"10.1016/j.bbcan.2024.189119","DOIUrl":"10.1016/j.bbcan.2024.189119","url":null,"abstract":"<p><p>Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":" ","pages":"189119"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soumyadeep Chattopadhyay, Rudradeep Hazra, Arijit Mallick, Sakuntala Gayen, Souvik Roy
{"title":"A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment.","authors":"Soumyadeep Chattopadhyay, Rudradeep Hazra, Arijit Mallick, Sakuntala Gayen, Souvik Roy","doi":"10.1016/j.bbcan.2024.189110","DOIUrl":"10.1016/j.bbcan.2024.189110","url":null,"abstract":"<p><p>Oncolytic viruses (OVs) are increasingly recognized as potent tools in cancer therapy, effectively targeting and eradicating oncogenic conditions while sparing healthy cells. They enhance antitumor immunity by triggering various immune responses throughout the cancer cycle. Genetically engineered OVs swiftly destroy cancerous tissues and activate the immune system by releasing soluble antigens like danger signals and interferons. Their ability to stimulate both innate and adaptive immunity makes them particularly attractive in cancer immunotherapy. Recent advancements involve combining OVs with other immune therapies, yielding promising results. Transgenic OVs, designed to enhance immunostimulation and specifically target cancer cells, further improve immune responses. This review highlights the intrinsic mechanisms of OVs and underscores their synergistic potential with other immunotherapies. It also proposes strategies for optimizing armed OVs to bolster immunity against tumors.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1879 4","pages":"189110"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongyi Liu, Ruiyue Dang, Wei Zhang, Jidong Hong, Xuejun Li
{"title":"SNARE proteins: Core engines of membrane fusion in cancer.","authors":"Hongyi Liu, Ruiyue Dang, Wei Zhang, Jidong Hong, Xuejun Li","doi":"10.1016/j.bbcan.2024.189148","DOIUrl":"https://doi.org/10.1016/j.bbcan.2024.189148","url":null,"abstract":"<p><p>Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.</p>","PeriodicalId":93897,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":" ","pages":"189148"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}