{"title":"A data assimilation method for analysis of cavitation bubble dynamics","authors":"J. Eshraghi, A. Ardekani, P. Vlachos","doi":"10.4231/0YAM-9T87","DOIUrl":"https://doi.org/10.4231/0YAM-9T87","url":null,"abstract":"","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"85 5-6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79781674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. de Castro, C. Moynihan, S. Stemmley, M. Szott, D. Ruzic
{"title":"Lithium, a path to make fusion energy affordable","authors":"A. de Castro, C. Moynihan, S. Stemmley, M. Szott, D. Ruzic","doi":"10.1063/5.0042437","DOIUrl":"https://doi.org/10.1063/5.0042437","url":null,"abstract":"In this tutorial article, we review the technological, physics, and economic basis for a magnetic fusion device utilizing a flowing liquid lithium divertor (molten metal velocity in the range of cm/s) and operating in a low-recycling plasma regime. When extrapolated to magnetic fusion reactor scale, the observed effects of a liquid lithium boundary on recycling reduction, confinement increase, and anomalous heat transport mitigation may offer a fundamentally distinct and promising alternative route to fusion energy production. In addition, this lithium-driven low recycling regime could accelerate fusion's commercial viability since such a device would be smaller, dramatically decreasing plant and electricity costs if all technological complexities are solved. First, the theoretical basis of the energy confinement and fusion performance as well as the related possibilities of low recycling regimes driven by flowing lithium plasma-facing components are reviewed. Then the paper emphasizes the technological obstacles that need to be overcome for developing the necessary systems for such a flowing liquid lithium solution at reactor scale and details how many of these have been overcome at laboratory and/or proof-of-concept scale. Finally, the current and planned scientific and engineering endeavors being performed at the University of Illinois at Urbana-Champaign regarding this alternative reactor option are discussed.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"102 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79430790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hye-Sook Park, S. Ali, P. Celliers, F. Coppari, J. Eggert, A. Krygier, A. Lazicki, J. Mcnaney, M. Millot, Y. Ping, R. Rudd, B. Remington, H. Sio, R. Smith, M. Knudson, E. McBride
{"title":"Techniques for studying materials under extreme states of high energy density compression","authors":"Hye-Sook Park, S. Ali, P. Celliers, F. Coppari, J. Eggert, A. Krygier, A. Lazicki, J. Mcnaney, M. Millot, Y. Ping, R. Rudd, B. Remington, H. Sio, R. Smith, M. Knudson, E. McBride","doi":"10.1063/5.0046199","DOIUrl":"https://doi.org/10.1063/5.0046199","url":null,"abstract":"The properties of materials under extreme conditions of pressure and density are of key interest to a number of fields, including planetary geophysics, materials science, and inertial confinement fusion. In geophysics, the equations of state of planetary materials, such as hydrogen and iron, under ultrahigh pressure and density provide a better understanding of their formation and interior structure [Celliers et al., “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018) and Smith et al., “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2, 591–682 (2018)]. The processes of interest in these fields occur under conditions of high pressure (100 GPa–100 TPa), high temperature (>3000 K), and sometimes at high strain rates (>103 s−1) depending on the process. With the advent of high energy density (HED) facilities, such as the National Ignition Facility (NIF), Linear Coherent Light Source, Omega Laser Facility, and Z, these conditions are reachable and numerous experimental platforms have been developed. To measure compression under ultrahigh pressure, stepped targets are ramp-compressed and the sound velocity, measured by the velocity interferometer system for any reflector diagnostic technique, from which the stress-density of relevant materials is deduced at pulsed power [M. D. Knudson and M. P. Desjarlais, “High-precision shock wave measurements of deuterium: Evaluation of exchange-correlation functionals at the molecular-to-atomic transition,” Phys. Rev. Lett. 118, 035501 (2017)] and laser [Smith et al., “Equation of state of iron under core conditions of large rocky exoplanets,” Nat. Astron. 2, 591–682 (2018)] facilities. To measure strength under high pressure and strain rates, experimenters measure the growth of Rayleigh–Taylor instabilities using face-on radiography [Park et al., “Grain-size-independent plastic flow at ultrahigh pressures and strain rates,” Phys. Rev. Lett. 114, 065502 (2015)]. The crystal structure of materials under high compression is measured by dynamic x-ray diffraction [Rygg et al., “X-ray diffraction at the national ignition facility,” Rev. Sci. Instrum. 91, 043902 (2020) and McBride et al., “Phase transition lowering in dynamically compressed silicon,” Nat. Phys. 15, 89–94 (2019)]. Medium range material temperatures (a few thousand degrees) can be measured by extended x-ray absorption fine structure techniques, Yaakobi et al., “Extended x-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti,” Phys. Rev. Lett. 92, 095504 (2004) and Ping et al., “Solid iron compressed up to 560 GPa,” Phys. Rev. Lett. 111, 065501 (2013), whereas more extreme temperatures are measured using x-ray Thomson scattering or pyrometry. This manuscript will review the scientific motivations, experimental techniques, and the regimes that can be probed for the study of materials under extreme HED conditions.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82500334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Stewart, J. Brooks, J. Levesque, M. Mauel, G. Navratil
{"title":"Suppression of ITG turbulence due to spectral shift during biasing induced H-mode on HBT-EP","authors":"I. Stewart, J. Brooks, J. Levesque, M. Mauel, G. Navratil","doi":"10.1063/5.0040265","DOIUrl":"https://doi.org/10.1063/5.0040265","url":null,"abstract":"Investigations of biasing induced H-mode discharges on HBT-EP show that the edge turbulence is consistent with the ion temperature gradient) mode and have allowed for the controlled observation of the effect of applied flow shear on the turbulence. Measurements of the radial wavenumber spectrum of floating potentials at the edge show that the turbulence intensity decreases with increasing shift in the spectrum average ⟨ k r ⟩ when increasing amounts of bias probe voltage (and increasing amounts of flow shear) is applied. This is in agreement with the spectral shift model [Staebler et al., Phys. Rev. Lett. 110, 055003 2013] for turbulence suppression via sheared flow. A shift in the wavenumber spectrum occurs at applied electrode voltages and currents below the threshold needed for an L–H transition, and a dithering transition is obtained when biasing near the threshold. Suppression of blob-filament turbulence in the scrape-off layer (SOL) precedes the L–H transition, with the SOL turbulence remaining low throughout the dithering phase, despite the modulation of turbulence levels in the nearby edge. This demonstrates that the SOL turbulence “decouples” from the edge turbulence. The spectral shift in the measured radial wavenumber is corroborated by the direct measurement of eddy tilt angle using a novel time delay analysis technique first developed for Doppler reflectometry [Pinzon et al., Plasma Phys. Controlled Fusion 61, 105009 (2019)] but adapted here for floating potential measurements.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86050770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SpinQuest/E1039 FPGA Trigger","authors":"Minjung Kim","doi":"10.2172/1771279","DOIUrl":"https://doi.org/10.2172/1771279","url":null,"abstract":"","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"162 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91019009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systematic Study of Potential False Azimuthal Asymmetries in SpinQuest","authors":"Forhad Hossain","doi":"10.2172/1771280","DOIUrl":"https://doi.org/10.2172/1771280","url":null,"abstract":"","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"736 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74772738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum degenerate mixtures of Cs and Yb","authors":"K. Wilson, A. Guttridge, Jack Segal, S. Cornish","doi":"10.1103/PHYSREVA.103.033306","DOIUrl":"https://doi.org/10.1103/PHYSREVA.103.033306","url":null,"abstract":"We report the production of quantum degenerate Bose-Bose mixtures of Cs and Yb with both attractive (Cs + $^{174}$Yb) and repulsive (Cs + $^{170}$Yb) interspecies interactions. Dual-species evaporation is performed in a bichromatic optical dipole trap that combines light at 1070 nm and 532 nm to enable control of the relative trap depths for Cs and Yb. Maintaining a trap which is shallower for Yb throughout the evaporation leads to highly efficient sympathetic cooling of Cs for both isotopic combinations at magnetic fields close to the Efimov minimum in the Cs three-body recombination rate at around 22 G. For Cs + $^{174}$Yb, we produce quantum mixtures with typical atom numbers of $N_mathrm{Yb} sim 5 times 10^4$ and $N_mathrm{Cs} sim 5 times 10^3$. We find that the attractive interspecies interaction (characterised by the scattering length $a_mathrm{CsYb} = -75,a_0$) is stabilised by the repulsive intraspecies interactions. For Cs + $^{170}$Yb, we produce quantum mixtures with typical atom numbers of $N_mathrm{Yb} sim 4 times 10^4$, and $N_mathrm{Cs} sim 1 times 10^4$. Here, the repulsive interspecies interaction ($a_mathrm{CsYb} = 96,a_0$) can overwhelm the intraspecies interactions, such that the mixture sits in a region of partial miscibility.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"68 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72609174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical Models for Living Forms in Medical Physics Submodel 1: The Information Processing from Teeth to Nerves","authors":"Christina Pospisil","doi":"10.26226/morressier.5fa409874d4e91fe5c54b9bc","DOIUrl":"https://doi.org/10.26226/morressier.5fa409874d4e91fe5c54b9bc","url":null,"abstract":"","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85985165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole Firestone, Katherine Fowler, S. Greberman, M. Mostafá
{"title":"Unassociated Candidate TeV Sources from HAWC","authors":"Nicole Firestone, Katherine Fowler, S. Greberman, M. Mostafá","doi":"10.26226/morressier.5fb692d74d4e91fe5c54c1ff","DOIUrl":"https://doi.org/10.26226/morressier.5fb692d74d4e91fe5c54c1ff","url":null,"abstract":"","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90262453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Picciau, M. Cadeddu, F. Dordei, C. Giunti, K. Kouzakov, A. Studenikin
{"title":"Revealing new processes with superfluid liquid helium detectors: the coherent elastic neutrino atom scattering","authors":"E. Picciau, M. Cadeddu, F. Dordei, C. Giunti, K. Kouzakov, A. Studenikin","doi":"10.5281/ZENODO.3925582","DOIUrl":"https://doi.org/10.5281/ZENODO.3925582","url":null,"abstract":"","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86933493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}