Bulletin of Chemical Reaction Engineering & Catalysis最新文献

筛选
英文 中文
Synthesis, Structural Characterization of a New Ni(II) Complex and Its Catalytic Activity for Oxidation of Benzyl Alcohol 一种新型Ni(II)配合物的合成、结构表征及其氧化苯甲醇的催化活性
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-04-26 DOI: 10.9767/bcrec.17.2.13975.375-382
Lihua Wang, F. Kong, X. Tai
{"title":"Synthesis, Structural Characterization of a New Ni(II) Complex and Its Catalytic Activity for Oxidation of Benzyl Alcohol","authors":"Lihua Wang, F. Kong, X. Tai","doi":"10.9767/bcrec.17.2.13975.375-382","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13975.375-382","url":null,"abstract":"In ethanol-water (v:v = 1:1), a new Ni(II) complex, [Ni(L)2(H2O)2] (1) (HL = 6-phenylpyridine-2-carboxylic acid) was synthesized using 6-phenylpyridine-2-carboxylic acid, NaOH and Ni(CH3COO)2.4H2O. The structure of complex 1 has been determined by elemental analysis and single crystal X-ray diffraction. The single crystal analysis shows that complex 1 contains one Ni(II) ion, two L ligands and  two coordinated water molecules. In 1, the Ni(II) ion is six-coordinated to two O atoms and two N atoms from L ligands and two O atoms from coordinated water molecules, respectively, which form a distorted octahedral coordination geometry. The whole unit of complex 1 is interconnected to each other through intermolecular N−H•••O hydrogen bonds involving oxygen atom of coordinated water molecule and the oxygen atoms of  L ligand to form 1D molecular architecture. The catalytic activity of complex 1 for oxidation of benzyl alcohol with O2 was investigated. The complex 1 shows good catalytic performance for the oxidation of benzyl alcohol, the benzyl alcohol conversion, benzaldehyde selectivity, and benzaldehyde yield were 49.1%, 92.0%, and 45.2%, respectively, at 90 °C under 0.7 Mpa O2 for 2 h. Moreover, complex 1 could be recovered easily by centrifugation and used repetitively for at least four times. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74510248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Study The Effect of Zinc Oxide Supported on Gelatin Mesoporous Silica (GSBA-15) on Structural Character and Their Methylene Blue Photodegradation Performance 明胶介孔二氧化硅(GSBA-15)负载氧化锌对其结构特性及亚甲基蓝光降解性能的影响
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-04-23 DOI: 10.9767/bcrec.17.2.13712.363-374
M. Ulfa, Ida Setiarini
{"title":"Study The Effect of Zinc Oxide Supported on Gelatin Mesoporous Silica (GSBA-15) on Structural Character and Their Methylene Blue Photodegradation Performance","authors":"M. Ulfa, Ida Setiarini","doi":"10.9767/bcrec.17.2.13712.363-374","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13712.363-374","url":null,"abstract":"Gelatin mesoporous silica SBA-15 (GSBA-15) with rod-like morphology has been successfully synthesized by hydrothermal method using P-123:gelatin, then aged at 90 °C for 24 h and calcined at 550 °C for 5 h. GSBA-15 was impregnated with ZnO amounts of 1; 5; and 10 wt% to obtain Zn/GSBA-15. Samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), Scanning Electron Microscopy (SEM), and Brunauer-Emmett-Teller (BET). The efficiency of methylene blue photodegradation was determined by a UV-Vis spectrophotometer. The FTIR result is functional groups of ZnO/GSBA-15, those were Si−O−Si, −OH, Zn−OH, and Zn−O. The morphology of ZnO/GSBA-15 was rod-like, and it consisted of silica, oxygen, and Zn. The surface area and pore volume of GSBA-15 declined (surface area from 520.8 to 351.9 m2/g and pore volume from 0.707 to 0.564 cm3/g) after ZnO impregnation due to pore blocking. At the same time, increasing pore diameter (from 2.82 nm to 3.19 nm) and crystallite size (from 5.1 nm to 12.6 nm) were observed due to the overlapping of ZnO-Silica particles. The increasing incorporation of ZnO on the silica GSBA-15 framework increases the photodegradation performance from 88.76% to 94.90% due to the high surface area, functional group rich, and dispersion of ZnO active sites. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88917789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Effect of Polymer Concentration on the Photocatalytic Membrane Performance of PAN/TiO2/CNT Nanofiber for Methylene Blue Removal through Cross-Flow Membrane Reactor 聚合物浓度对PAN/TiO2/CNT纳米纤维光催化膜性能的影响
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-04-14 DOI: 10.9767/bcrec.17.2.13668.350-362
Lathifah Puji Hastuti, A. Kusumaatmaja, A. Darmawan, I. Kartini
{"title":"Effect of Polymer Concentration on the Photocatalytic Membrane Performance of PAN/TiO2/CNT Nanofiber for Methylene Blue Removal through Cross-Flow Membrane Reactor","authors":"Lathifah Puji Hastuti, A. Kusumaatmaja, A. Darmawan, I. Kartini","doi":"10.9767/bcrec.17.2.13668.350-362","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13668.350-362","url":null,"abstract":"A photocatalytic membrane combining photocatalyst and membrane technology based on polyacrylonitrile (PAN) and TiO2/CNT has been developed. Such combination is to overcome fouling formation on the membrane, thus prolonging the membrane lifetime and enhancing the efficiency on the waste treatment. PAN nanofiber was prepared by electrospinning method. The precursor solution was dissolved PAN and dispersed TiO2/CNT in N,N-Dimethylformamide (DMF). PAN concentration in the precursor solution was varied at 4.5, 5.5, 6.5, 7.5, and 8.5%. The effect of PAN concentration on the fiber morphology and pore size was discussed. The performance of the resulted membrane on methylene blue (MB) removal was also investigated on a cross-flow system. SEM images of the resulted membrane identified that PAN nanofiber was successfully fabricated with random orientation. The PAN 6.5% showed the highest diffraction intensity of the anatase crystalline phase of TiO2. The additions of CNT and TiO2 lead to the formation of a cluster of beads as confirmed by TEM. Increasing the concentration of PAN increased the fiber diameter from 206 to 506 nm, slightly decreased the surface area and pore size, respectively, from 32.739 to 21.077 m2.g−1 and from 6.38 to 4.75 nm. The PAN/TiO2/CNT nanofibers show type IV of the adsorption-desorption N2 isotherms with the H1 hysteresis loops. Membrane PAN/TiO2/CNT at PAN concentration of 6.5% shows the optimum performance on the MB color removal by maintaining the percentage of rejection (%R) at 90% for 240 min and permeability of 750 LMH. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80344928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Hydrothermal Synthesis and Photocatalytic Activity of NiO Nanoparticles under Visible Light Illumination 可见光下水热合成NiO纳米颗粒及其光催化活性研究
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-04-11 DOI: 10.9767/bcrec.17.2.13680.340-349
J. Anita Lett, S. Sagadevan, Getu Kassegn Weldegebrieal, I. Fatimah
{"title":"Hydrothermal Synthesis and Photocatalytic Activity of NiO Nanoparticles under Visible Light Illumination","authors":"J. Anita Lett, S. Sagadevan, Getu Kassegn Weldegebrieal, I. Fatimah","doi":"10.9767/bcrec.17.2.13680.340-349","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13680.340-349","url":null,"abstract":"In this present study, Nickel oxide (NiO) nanoparticles (NPs) have been synthesized using the hydrothermal method and characterized using powder X-ray Diffraction (XRD), UV-vis and Fourier Transform Infra Red (FTIR) spectroscopies, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) methods. The result of the characterization indicates that the synthesized sample has a pure cubic phase of NiO with roughly spherical shape morphologies and respective estimated crystallinity and microstrain values of about 78% and 5.1. Test of the photocatalytic activity of the synthesized sample towards the model contaminant dye methylene blue (MB) shows a degradation efficiency of 46% in a period of 2 h under nature sunlight irradiation at natural pH and that the reaction could satisfactorily describe both pseudo-first-order and pseudo-second-order kinetic models. So, this synthesis method may potentially be used for the effective elimination of toxic organic pollutants from water and wastewater over prolonged exposure under natural sunlight without adding any oxidant or adjusting the pH of the reaction medium. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88393813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Palladium Complexes Catalysed Telomerisation of Arylamines with Butadiene and Their Cyclisation into Quinoline Derivatives 钯配合物催化芳胺与丁二烯的端粒化及其环化成喹啉衍生物
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-03-07 DOI: 10.9767/bcrec.17.2.13500.322-330
R. Zaripov, R. Khusnitdinov, Ekaterina Ganieva, R. Ishberdina, K. Khusnitdinov, I. Abdrakhmanov
{"title":"Palladium Complexes Catalysed Telomerisation of Arylamines with Butadiene and Their Cyclisation into Quinoline Derivatives","authors":"R. Zaripov, R. Khusnitdinov, Ekaterina Ganieva, R. Ishberdina, K. Khusnitdinov, I. Abdrakhmanov","doi":"10.9767/bcrec.17.2.13500.322-330","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13500.322-330","url":null,"abstract":"Since alkynyl-arylamines are widely used in the chemical industry as pre products, a method of catalytic synthesis of problematic substituted quinolines from aromatic amines containing octadienal substituents has been developed. For this purpose, the processes of N-2,7-octa-dienyl anilines cyclisation under the action of transition metal complexes and telomerisation of arylamines with butadiene in the presence of palladium complexes were studied. Suppose N-2,7-octa-dienyl anilines are synthesised by telomerisation of arylamines with butadiene in the presence of palladium complexes. In that case, the cyclisation process is carried out in the presence of catalytic amounts of Pd(II) complex with dimethyl sulfoxide or nitrobenzene. The conducted research made it possible to study the opportunity of obtaining in one stage aromatic amines substituted in the nucleus by the reaction of butadiene with arylamines in the presence of palladium complexes. The research proved the principal possibility of obtaining ortho-substituted naphthylamines from butadiene and corresponding naphthylamines in one stage. A catalytic method for the synthesis of problematic substituted quinolines in the presence of palladium complexes has been developed. It has been established that the cyclisation of N-octadienyl-arylamines into quinolines proceeds through the stage of Kleisen amino rearrangement. N-2,7-octa-dienyl anilines and their derivatives can be widely used in the paint, pharmaceutical and chemical industries. Quinoline alkenylene derivatives can be used to produce unique polymer materials, hardeners, stabilisers, extractants, sorbing agents, catalysts for the synthesis of polyurethanes, biologically active substances and their analogues. They are pre-products in synthesising alkaloids, medicines and products used in agriculture. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89442908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Study of a Water Gas Shift Fixed Bed Reactor Operating at Low Pressures 低压运行水煤气移位固定床反应器的数值研究
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-03-04 DOI: 10.9767/bcrec.17.2.13510.304-321
Wail El-Bazi, Mustapha Bideq, A. El-Abidi, S. Yadir, Bajil Ouartassi
{"title":"Numerical Study of a Water Gas Shift Fixed Bed Reactor Operating at Low Pressures","authors":"Wail El-Bazi, Mustapha Bideq, A. El-Abidi, S. Yadir, Bajil Ouartassi","doi":"10.9767/bcrec.17.2.13510.304-321","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13510.304-321","url":null,"abstract":"Today, hydrogen has become one of the most promising clean energy. Several processes allow obtaining hydrogen, among them there is the Water Gas Shift (WGS) reaction. On an industrial scale, WGS reaction takes place at high pressure [25–35 bar]. At high pressure, the cost of the process rises due to the energy consumed by compression, and the reduction in the lifetime of the equipment and the catalyst. At low pressures, catalyst lifetime can reach many years and the energy cost is reduced. It is for this reason that we are interested in modelling and simulation of a WGS converter operating at low pressures close to atmospheric pressure. In this work, a numerical study was conducted in order to determine the conditions allowing good rector operating at low pressure. A number of drawbacks of the process were identified. These drawbacks are essentially the non-negligible pressure drops and the strong intraparticle diffusion resistances. The prediction of the concentrations and the reaction rate within the pellet showed that the active zone of the pellet is located near the particle surface. It has also been shown that the resistances to interfacial mass and heat transfer are insignificant. The study of pressure effect showed that the pressure increase reduces the required catalyst mass to achieve equilibrium. Finally, this work revealed that the decrease in temperature and the increase in the concentrations of the reactants by increasing their fluxes, make it possible to increase the effectiveness factor of the catalyst and the conversion of carbon monoxide. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"122 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75495844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Green Synthesis, Characterization, and Catalytic Activity of Amine-multiwalled Carbon Nanotube for Biodiesel Production 胺-多壁碳纳米管用于生物柴油的绿色合成、表征及催化活性研究
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-02-28 DOI: 10.9767/bcrec.17.2.13402.286-303
M. C. Macawile, Alva Durian, R. V. Rubi, A. Quitain, T. Kida, Raymond Tan, L. Razon, J. Auresenia
{"title":"Green Synthesis, Characterization, and Catalytic Activity of Amine-multiwalled Carbon Nanotube for Biodiesel Production","authors":"M. C. Macawile, Alva Durian, R. V. Rubi, A. Quitain, T. Kida, Raymond Tan, L. Razon, J. Auresenia","doi":"10.9767/bcrec.17.2.13402.286-303","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13402.286-303","url":null,"abstract":"An amine-functionalized multiwalled carbon nanotube (MWCNT) was prepared for use as a basic heterogeneous catalyst for the conversion of Cocos nucifera (coconut) oil and Hibiscus cannabinus (kenaf) oil to biodiesel. The 3-aminopropyltrimethoxysilane (3-APTMS) was chosen to form an amine-reactive surface to bind with hydroxyl (−OH) and carboxyl (−COOH) groups of oxidized MWCNT. Silanization took place using a green surface modification method in which supercritical carbon dioxide fluid was utilized under the following conditions: 55 °C, 9 MPa, and 1 h. The synthesized catalyst was characterized using Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), Field emission scanning electron microscopy–energy dispersive x-ray (FESEM-EDX), Time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray powder diffraction (XRD), and Brunauer–Emmett-Teller (BET). Transesterification of coconut oil using 10 wt% NH2-MWCNT catalyst (3 wt% APTMS), 12:1 molar ratio of methanol and oil at 63 °C for 1 h resulted in a >95% conversion. On the other hand, the same catalyst was used in the transesterification of kenaf oil, and formation of ammonium carboxylated salt was observed. The effects of temperature, pressure, and silane concentration on surface modification of MWCNT were evaluated in terms of the catalyst’s basic site density and fatty acid methyl ester conversion. The results indicate that reaction temperature and silane concentration had the most significant effects. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80547849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sodium Silicate Catalyst for Synthesis Monoacylglycerol and Diacylglycerol-Rich Structured Lipids: Product Characteristic and Glycerolysis–Interesterification Kinetics 硅酸钠催化剂合成富含单酰基甘油和二酰基甘油的结构脂:产品特性和甘油水解-酯化动力学
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-02-23 DOI: 10.9767/bcrec.17.2.13306.250-262
Inasanti Pandan Wangi, S. Supriyanto, H. Sulistyo, C. Hidayat
{"title":"Sodium Silicate Catalyst for Synthesis Monoacylglycerol and Diacylglycerol-Rich Structured Lipids: Product Characteristic and Glycerolysis–Interesterification Kinetics","authors":"Inasanti Pandan Wangi, S. Supriyanto, H. Sulistyo, C. Hidayat","doi":"10.9767/bcrec.17.2.13306.250-262","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13306.250-262","url":null,"abstract":"Sodium silicate as heterogeneous base catalysts is more environmentally friendly and easily separated by filtration. The objective of this research was to evaluate the activated sodium silicate as catalyst for synthesis of monoacylglycerol (MAG) and diacylglycerol (DAG)-rich structured lipids (SLs) from a palm olein-stearin blend. Sodium silicate was activated and functional group was characterized. Reaction was performed using 5% catalyst (w/w) at various reaction temperature (70–120 °C) for 3 h in a batch stirred tank reactor. Physical properties of SLs, such as melting point, slip melting point, and hardness of SLs were determined. Reaction kinetics were also evaluated. The results show that Si−O bending was reduced and shifted to a Si−O−Na and Si−O−Si functional groups after sodium silicate activation. Temperature had a significant effect on SLs composition at higher than 90 °C. An increase in temperature produced more MAG, resulting in better product physical properties. The best reaction condition was at 110 °C. Rate constants and the Arrhenius equation were also obtained for each reaction step. In summary, the activated sodium silicate catalyzed glycerolysis-interesterification reaction, which produced MAG and DAG at temperature higher than 90 °C. Therefore, the physical properties of SLs were improved. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84397173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Synthesis and Characterization of Mesoporous Carbon Supported Ni-Ga Catalyst for Low-Pressure CO2 Hydrogenation 介孔碳负载Ni-Ga低压CO2加氢催化剂的合成与表征
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-02-23 DOI: 10.9767/bcrec.17.2.13377.278-285
Uwin Sofyani, Y. Krisnandi, I. Abdullah
{"title":"Synthesis and Characterization of Mesoporous Carbon Supported Ni-Ga Catalyst for Low-Pressure CO2 Hydrogenation","authors":"Uwin Sofyani, Y. Krisnandi, I. Abdullah","doi":"10.9767/bcrec.17.2.13377.278-285","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13377.278-285","url":null,"abstract":"In this study, the atmospheric-pressure hydrogenation of CO2 was carried over bimetallic Ni-Ga catalyst supported on mesoporous carbon (MC). MC was successfully prepared using the soft-template method as proven by Fourier Transform Infra Red (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy - Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Brunauer–Emmett–Teller  Surface Area Analyzer (BET SAA), and Transmission Electron Microscopy (TEM) characterizations. The Ni-Ga/MC catalyst was synthesized using the impregnation method, and based on the XRD characterization, the formation of bimetallic Ni-Ga on the MC support is confirmed. The EDS mapping image shows the uniform distribution of the bimetallic Ni-Ga on the MC surface, especially for the Ni5Ga3/MC and NiGa3/MC catalysts. Moreover, the TEM images show an excellent pore size distribution. The formation of Ni-Ga alloy was identified as an active site in the CO2 hydrogenation. Ni5Ga3/MC catalyst exhibited a 10.80% conversion of CO2 with 588 μmol/g formaldehyde at 1 atm, 200 °C, and H2/CO2 ratio of 3/1. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78838763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic Degradation of Polyethylene Microplastics and Disinfection of E. coli in Water over Fe- and Ag-Modified TiO2 Nanotubes Fe和ag修饰TiO2纳米管光催化降解聚乙烯微塑料及水中大肠杆菌的研究
Bulletin of Chemical Reaction Engineering & Catalysis Pub Date : 2022-02-23 DOI: 10.9767/bcrec.17.2.13400.263-277
Yuwendi Yuwendi, M. Ibadurrohman, Setiadi Setiadi, S. Slamet
{"title":"Photocatalytic Degradation of Polyethylene Microplastics and Disinfection of E. coli in Water over Fe- and Ag-Modified TiO2 Nanotubes","authors":"Yuwendi Yuwendi, M. Ibadurrohman, Setiadi Setiadi, S. Slamet","doi":"10.9767/bcrec.17.2.13400.263-277","DOIUrl":"https://doi.org/10.9767/bcrec.17.2.13400.263-277","url":null,"abstract":"In this study, Fe- and Ag-modified TiO2 nanotubes were synthesized via an anodization method as photocatalysts for degradation of polyethylene microplastics and disinfection of Escherichia coli (E. coli). The anodization voltage, as well as the Fe3+ or Ag+ concentrations on TiO2 nanotubes were evaluated and correlated to their corresponding photocatalytic properties. TiO2 nanotubes were firstly synthesized by anodization of Ti plates in a glycerol-based electrolyte, followed by incorporation of either Fe or Ag via a Successive Ionic Layer Adsorption and Reaction (SILAR) method with Fe(NO3)3 and AgNO3 as Fe and Ag precursors, respectively. UV-Vis DRS shows that the addition of Fe or Ag on TiO2 nanotubes causes a redshift in the absorption spectra. The X-ray diffractograms indicate that, in the case of Fe-modified samples, Fe3+ was successfully incorporated into TiO2 lattice, while Ag scatters around the surface of the tubes as Ag and Ag2O nanoparticles. A microplastic degradation test was carried out for 90 mins inside a photoreactor with UVC illumination. TiO2 nanotubes that are anodized with a voltage of 30 V exhibit the best degradation results with 17.33% microplastic weight loss in 90 mins. Among the modified TiO2 nanotubes, 0.03 M Ag-TiO2 was the only one that surpassed the unmodified TiO2 in terms of microplastic degradation in the water, offering up to 18% microplastic weight loss in 90 min. In terms of E. coli disinfection, 0.03M Ag-TiO2 exhibit better performance than its unmodified counterpart, revealing 99.999% bactericidal activities in 10 mins. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91523887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信