Jiayu Chen, Tianjiao Dai, Z. Lei, K. Shimizu, Donghui Wen, Zhenya Zhang
{"title":"Historical exposure to wastewater disposal reinforces the stability of sediment bacterial community in response to future disturbance","authors":"Jiayu Chen, Tianjiao Dai, Z. Lei, K. Shimizu, Donghui Wen, Zhenya Zhang","doi":"10.2166/bgs.2021.017","DOIUrl":"https://doi.org/10.2166/bgs.2021.017","url":null,"abstract":"\u0000 Given that long-term treated wastewater discharge may alter the microbial community of the recipient coast, it is important to evaluate whether and how the community's stability is impacted. We constructed microcosms using coastal sediments with (near-coast) and without (far-coast) a wastewater disposal history and compared the communities’ responses to p-chloroaniline (PCAN, a typical organic pollutant) in low (10 mg/L) and high (100 mg/L) concentrations. Compared to the far-coast community, the near-coast community drove faster PCAN attenuation and nitrate generation. More significant negative correlations were observed between the alpha-diversity indices and PCAN concentrations in the far-coast communities than the near-coast ones. The community turnover rate, represented by the slopes of the time–decay curves, was slower for the near-coast community (−0.187) than that for the far-coast community (−0.233), but only when the PCAN was added in low concentration. Our study revealed that the long-term wastewater disposal may cause the sediment bacterial community to be less sensitive and more stable in response to a future disturbance, demonstrating a significant historical effect of environmental context on the coastal microbial community's stability.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42749636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenwen Chen, Huan-fang Huang, Haixiang Li, Jianhua Cao, Qiang Li, Yingjie Chen, B. Bai, H. Zeng
{"title":"Coupled nitrogen transformation and carbon sink in the karst aquatic system: a review","authors":"Wenwen Chen, Huan-fang Huang, Haixiang Li, Jianhua Cao, Qiang Li, Yingjie Chen, B. Bai, H. Zeng","doi":"10.2166/bgs.2021.120","DOIUrl":"https://doi.org/10.2166/bgs.2021.120","url":null,"abstract":"\u0000 Carbonate bedrock regions represent that 14% of Earth's continental surface and carbon (C) sink in karst water plays an important role in the global C cycle due to the CO2 consumption during carbonate mineral weathering. Intensive agriculture and urbanization have led to the excessive input of nitrogen (N) into aquatic systems, while the high concentrations of inorganic C in the karst water might affect the N cycle. This paper summarized the characteristics of water in karst regions and discussed the N transformation coupled with the C cycle in the condition of high Ca2+ content, high pH, and high C/N ratios. Carbonates can consume more atmospheric and pedologic CO2 than non-carbonates because of their high solubility and high rate of dissolution, resulting in the higher average CO2 sink in karst basins worldwide than that in non-karst basins. Therefore, carbonate mineral weathering and aquatic photosynthesis are the two dominant ways of CO2 absorption, which are termed as coupled carbonate weathering. As the alkalinity and high C/N content of karst water inhibit the denitrification and mineralization processes, the karst aquatic environment is also served as the N sink.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":"17 4","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41299545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Tian, Guifeng Liu, Ying-xia Gao, Yaru Wang, Jun Zhang, Yali Fang, Zongqiang Zhu, H. Deng
{"title":"Comparative study on As(III) and As(V) adsorption by CO32--intercalated Fe/Mn-LDHs from aqueous solution","authors":"Yan Tian, Guifeng Liu, Ying-xia Gao, Yaru Wang, Jun Zhang, Yali Fang, Zongqiang Zhu, H. Deng","doi":"10.2166/bgs.2021.010","DOIUrl":"https://doi.org/10.2166/bgs.2021.010","url":null,"abstract":"\u0000 Arsenic pollution prevails in rivers and reservoirs in nonferrous metal mining areas, especially in lead–zinc mining areas, which affects the health of the people residing in such areas. Arsenic usually exists as As(III) and As(V) in water, and the adsorption of As(III) and As(V) changes with the type of adsorbent used. In this work, we report a novel adsorbent Fe/Mn–CO3-layered double hydroxide (Fe/Mn–CO3-LDH) composite that can efficiently remove both As(III) and As(V) from water. When the initial concentrations of As(III) and As(V) were 5, 10 and 50 mg/L, the adsorption capacities were 10.12–53.90 and 10.82–48.24 mg/g in the temperature range of 25–45 °C, respectively. The adsorption kinetics conformed well to the pseudo-second-order kinetic model, with all of the fitted correlation coefficients being above 0.998 for all the three initial concentrations (5, 10 and 50 mg/L) tested, suggesting a chemisorption-dominated process. The adsorption isotherms of As(III) and As(V) by Fe/Mn–CO3-LDHs conformed better to the Freundlich model than to the Langmuir one, indicating a heterogeneous reversible adsorption process. The theoretical maximum adsorption capacity increased with the increase in temperature. During adsorption, As(III) was partially converted to As(V), which was further interacted with intralayer anions. While the electrostatic attraction played an important role in the adsorption of As(V).","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49236179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Water quality impacts of young green roofs in a tropical city: a case study from Singapore","authors":"H. Lim, E. Segovia, A. Ziegler","doi":"10.2166/bgs.2021.007","DOIUrl":"https://doi.org/10.2166/bgs.2021.007","url":null,"abstract":"\u0000 This study examined the effects of two substrates (SOIL and COMMERCIAL) and grass on the green roof runoff quality in Singapore. Ten events were sampled over a 9-month period. Rainfall and green roof runoff from grass and bare experimental configurations were tested for total organic carbon (TOC), nitrogen and phosphorus nutrients (N, NH4+-N and PO43−-P), cations/anions and trace metals (Fe, Cu, Zn, Cd and Pb). All configuration units neutralised acid rainfall and removed metals except Fe despite their proximity to an industrial area. Concentrations decrease over the monitoring period for most water quality variables. The COMMERCIAL (COM) configurations elevated Cl− (3.8–10.8 ppm), SO42− (1.5–32.4 ppm), NO3−-N (7.8–75.6 ppm) and NH4+-N (22.0–53.1 ppm) concentrations in the runoff. Concentrations of NO3−-N (4.5–67.7 ppm) and NH4+-N (14.7–53.0 ppm) remained high at the end of the monitoring period for the COMgrass configuration, even with dilution from monsoon rainfall, making it suitable as an irrigation water source and a fertiliser substitute. The SOIL substrate retained N-nutrients, TOC and trace metals with concentrations comparable or below rainfall inputs. This substrate is suitable for widespread green roof applications in Singapore and other tropical cities. We recommend substrate testing before their approval for use on green roofs and encourage the long-term monitoring of these systems.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45654055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiadong Zhang, V. Prodanovic, A. Lintern, Kefeng Zhang
{"title":"Development of the data-driven models for accessing the impact of design variables on heavy metal removal in constructed wetlands","authors":"Jiadong Zhang, V. Prodanovic, A. Lintern, Kefeng Zhang","doi":"10.2166/bgs.2021.024","DOIUrl":"https://doi.org/10.2166/bgs.2021.024","url":null,"abstract":"\u0000 Constructed wetlands are a type of green infrastructure commonly used for urban stormwater treatment. Previous studies have shown that the various design characteristics have an influence on the outflow heavy metal concentrations. In this study, we develop a Bayesian linear mixed model (BLMM) and a Bayesian linear regression model (BLRM) to predict the outflow concentrations of heavy metals (Cd, Cu, Pb and Zn) using an inflow concentration (Cin) and five design variables, namely media type, constructed wetland type (CWT), hydraulic retention time, presence of a sedimentation pond (SedP) and wetland-to-catchment area ratio (Ratio). The results show that the BLMM had much better performance, with the mean Nash–Sutcliffe efficiency between 0.51 (Pb) and 0.75 (Cu) in calibration and between 0.28 (Pb) and 0.71 (Zn) in validation. The inflow concentration was found to have significant impacts on the outflow concentration of all heavy metals, while the impacts of other variables on the wetland performance varied across metals, e.g., CWT and SedP showed a positive correlation to Cd and Cu, whereas media and Ratio were negatively correlated with Pb and Zn. Results also show that the 100-fold calibration and validation was superior in identifying the key influential factors.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45243089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seepage metal concentrations beneath long-term operated bioretention systems","authors":"Arne Reck, Mogens Thalmann, E. Paton, B. Kluge","doi":"10.2166/bgs.2021.014","DOIUrl":"https://doi.org/10.2166/bgs.2021.014","url":null,"abstract":"Bioretention systems maintain the natural water cycle and help to mitigate climatic extremes impact on urban areas by retarding, storing, and evaporating stormwater runoff. Although bioretention systems have been operated for more than 25 years, systematic investigations on the hydrological functionality and pollutant retention performance of older systems are rare. We employed laboratory and field experiments to investigate three long-term operated bioretention systems in Germany with the following objectives: (i) physico-chemical substrate characterisation; (ii) an event-based influent and effluent trace metal concentration monitoring covering 22 months and (iii) the calculation of metal retention rates. Regarding the pollution status, we found significantly increased trace metal contents in the soil substrate mainly as a function of the drainage area type and the inflow regime. Nonetheless, all measured metal seepage concentrations fall below the German legislative trigger values. Our current findings demonstrate no risk of groundwater degradation even for old bioretention systems suggesting bioretention as a powerful and sustainable tool for stormwater management. Further research requires the handling of soil substrates modified by stormwater infiltration showing enhanced trace metal contents and a certain amount of technogenic sediments.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41688221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sludge treatment and resource recovery towards carbon neutrality in China: current status and future perspective","authors":"Ying Xu, Rui Liu, Dong-fang Yang, Xiaohu Dai","doi":"10.2166/bgs.2021.115","DOIUrl":"https://doi.org/10.2166/bgs.2021.115","url":null,"abstract":"\u0000 Global warming – mainly caused by carbon emissions – is a major global challenge for human sustainable development. Carbon emission reduction and resource recovery from sludge treatment are critical to the carbon neutralisation of future wastewater treatment plants. This paper analyses the key elements of carbon emissions during sludge treatment and disposal, namely energy source carbon emissions, fugitive carbon emissions and carbon compensation. Of the four mainstream process routes analysed in this work, anaerobic digestion + dry incineration is identified as the route with the highest potential for reducing carbon emissions in the future. Finally, based on a review of current international research hotspots, the future development directions for sludge treatment and resource recovery are discussed. This paper thus provides a comprehensive understanding of the current sludge treatment processing routes and serves as a reference for process route selection and future research on carbon neutralisation.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":"1 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67819432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elhadi Mohsen Hassan Abdalla, I. Selseth, T. Muthanna, H. Helness, K. Alfredsen, Terje Gaarden, E. Sivertsen
{"title":"Hydrological performance of lined permeable pavements in Norway","authors":"Elhadi Mohsen Hassan Abdalla, I. Selseth, T. Muthanna, H. Helness, K. Alfredsen, Terje Gaarden, E. Sivertsen","doi":"10.2166/bgs.2021.009","DOIUrl":"https://doi.org/10.2166/bgs.2021.009","url":null,"abstract":"\u0000 Lined permeable pavements (LPPs) are types of sustainable urban stormwater systems (SUDs) that are suitable for locations with low infiltration capacity or shallow groundwater levels. This study evaluated the hydrological performance of an LPP system in Norway using common detention indicators and flow duration curves (FDCs). Two hydrological models, the Storm Water Management Model (SWMM)-LID module and a reservoir model, were applied to simulate continuous outflows from the LPP system to plot the FDCs. The sensitivity of the parameters of the SWMM-LID module was assessed using the generalized likelihood uncertainty estimation methodology. The LPP system was found to detain the flow effectively based on the median values of the detention indicators (peak reduction = 89%, peak delay = 40 min, centroid delay = 45 min, T50-delay = 86 min). However, these indicators are found to be sensitive to the amount of precipitation and initial conditions. The reservoir model developed in this study was found to yield more accurate simulations (higher NSE) than the SWMM-LID module, and it can be considered a suitable design tool for LPP systems. The FDC offers an informative method to demonstrate the hydrological performance of LPP systems for stormwater engineers and decision-makers.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43151636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Liu, Zihan Li, Zifan Che, Hu Xinran, M. Ying, H. Ren, Xu-xiang Zhang
{"title":"Prevalence of common enteric viruses in municipal wastewater treatment plants and their health risks arising from wastewater reuse","authors":"Peng Liu, Zihan Li, Zifan Che, Hu Xinran, M. Ying, H. Ren, Xu-xiang Zhang","doi":"10.2166/bgs.2021.012","DOIUrl":"https://doi.org/10.2166/bgs.2021.012","url":null,"abstract":"\u0000 Enteric viruses are known to be prevalent in municipal wastewater, but information on the health risks arising from wastewater reuse is limited. This study quantified six common enteric viruses in raw wastewater and determined the effectiveness of different secondary and tertiary treatment processes at reducing their abundances in three full-scale wastewater treatment plants in China. In the raw wastewater, polyomavirus BK and norovirus GII (Nov GII) exhibited the highest abundance among the detected DNA and RNA viruses, respectively, with concentrations >5 log10 copies/L. Viruses in the raw wastewater were mainly removed by the secondary treatment processes, with log reduction values ranging from 1 to 2. The tertiary treatment processes of both chlorination and ultraviolet irradiation facilitated the additional reduction of viruses. The quantitative microbial risk assessment was applied to estimate the health risks of adenovirus (Adv) and Nov GII when reusing the treated wastewater for irrigation of public green spaces and crops. Estimated disabled-adjusted life-years of Adv and Nov GII for both reuses were higher than the risk threshold (10−6) required by the WHO in the actual scenarios. More effective treatment technologies should be implemented to remove viruses for safe reuse of the treated wastewater.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43816158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blue-Green SystemsPub Date : 2021-09-25DOI: 10.22541/au.163255049.94952987/v1
S. Spraakman, J. Martel, J. Drake
{"title":"How much water can bioretention retain, and where does it go?","authors":"S. Spraakman, J. Martel, J. Drake","doi":"10.22541/au.163255049.94952987/v1","DOIUrl":"https://doi.org/10.22541/au.163255049.94952987/v1","url":null,"abstract":"Bioretention is a type of green stormwater infrastructure for the urban\u0000environment that mimics a natural hydrologic system by reducing peak\u0000flows and runoff volumes and encouraging infiltration and\u0000evapotranspiration. This study examines the complete water balance of a\u0000bioretention system located in Vaughan, Ontario, Canada, between 2018\u0000and 2019. The water balance was further broken down by event size, where\u0000the event size was determined by rainfall frequency analysis. Recharge\u0000was the largest component of the water balance overall (86 % of\u0000inflow), as well as by event size. Evapotranspiration was the next\u0000largest water balance component (7 % of inflow overall), and was a\u0000significant component of inflow (21 %) when considering only small\u0000events (50 % probability of recurrence). Evapotranspiration is a slow\u0000but consistent process, averaging 2.3 mm/day overall and 2.9 mm/day\u0000during the growing season. Climate change is likely to bring more wet\u0000days and higher temperatures, which will impact the bioretention water\u0000balance by increasing evapotranspiration and inflow. Design standards\u0000for retention targets should be updated based on the most recent\u0000rainfall frequency analyses to adjust for changing climate conditions.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":"115 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68201158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}