{"title":"Aeration strategies and total nitrogen removal in a hybrid aerated treatment wetland","authors":"Caroline Kimie Miyazaki, Ania Morvannou, Elodie Higelin, J. Nivala, Pascal Molle","doi":"10.2166/bgs.2023.045","DOIUrl":"https://doi.org/10.2166/bgs.2023.045","url":null,"abstract":"\u0000 \u0000 This study investigates the impact of aeration strategy on the performance of total nitrogen (TN) removal in a compact hybrid aerated treatment wetland (TW), called Rhizosph'air®. The system combines a single-stage French vertical flow wetland with an aerated horizontal-flow wetland, offering a unique and flexible approach for optimizing TN removal. In total, seven experimental conditions were tested, with different aeration modes, hydraulic loading rates and ammonium addition. The wetland system demonstrated high performance in terms of chemical oxygen demand removal (>85%) and solids removal (>90%), regardless of the experimental condition. However, TN removal was found to be directly impacted by operational changes. Increasing the hydraulic loading rate from 0.15 to 0.25 m/day led to an improvement in TN removal, achieving over 60%. Furthermore, when ammonium was added to the inlet and when the aeration timing was synced with the timing of the influent batch load, the environmental conditions facilitated the denitrification process, resulting in TN removal of approximately 70% and the lowest effluent NO3-N concentrations (8.70 ± 4.40 mg/L). In summary, the timing of the aeration strategy according to influent batch loading improved TN removal, suggesting its potential for optimization in future studies.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rudy Rossetto, Alessandro Lenti, Laura Ercoli, Luca Sebastiani, Ataollah Joodavi
{"title":"Infiltration performance evaluation of a 15-year-old concrete grid paver parking area (Italy)","authors":"Rudy Rossetto, Alessandro Lenti, Laura Ercoli, Luca Sebastiani, Ataollah Joodavi","doi":"10.2166/bgs.2023.043","DOIUrl":"https://doi.org/10.2166/bgs.2023.043","url":null,"abstract":"\u0000 \u0000 The management of urban stormwater needs a wide array of environmentally friendly solutions to safeguard water resources and improve the quality of the urban environment. In that, permeable pavements (a type of sustainable drainage system) are designed to reduce the volume and peak flow of stormwater on-site, improve infiltrating water quality, and combat the urban heat island phenomena. In this study, we tested the infiltration capacity of 15-year-old concrete grid pavers (CGPs) using single-ring infiltrometer tests. We investigated how various factors, including location within the parking space, affect infiltration rates. Despite no maintenance and 15 years of operation, the infiltration capacity of the CGPs still exceeds the minimum infiltration capacity of 1.62 mm/min as required in many European regions. This may be due to the presence of soil cracks and the development of plant roots and insect/microorganism activities within the pavement voids. Indeed, this ‘living soil system’ continuously develops and counteracts the formation of clogging, interacting with the compaction process. As such, the selection and management of the vegetation within CGP voids is of primary importance. Our study demonstrates that incorporating CGPs is effective in addressing emerging challenges associated with urban hydrology. Due to effectiveness and limited maintenance requirements, CGPs coul.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138978531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Bosco, Elhadi Mohsen Hassan Abdalla, T. Muthanna, K. Alfredsen, Britt Rasten, Heidi Kjennbakken, E. Sivertsen
{"title":"Evaluating the stormwater management model for hydrological simulation of infiltration swales in cold climates","authors":"C. Bosco, Elhadi Mohsen Hassan Abdalla, T. Muthanna, K. Alfredsen, Britt Rasten, Heidi Kjennbakken, E. Sivertsen","doi":"10.2166/bgs.2023.044","DOIUrl":"https://doi.org/10.2166/bgs.2023.044","url":null,"abstract":"\u0000 The Stormwater Management Model (SWMM) is a widely used tool for assessing the hydrological performance of infiltration swales. However, validating the accuracy of SWMM simulation against observed data has been challenging, primarily because well-functioning infiltration swales rarely produce surface runoff, especially over short monitoring periods. This study addresses this challenge by using measured subsurface water storage levels for calibration and validation. The study evaluated three SWMM modules, namely, the snowpack, aquifer, and low-impact development (LID) modules, to simulate subsurface water storage levels of an infiltration swale located in a cold climate region during snow and snow-free periods. Global sensitivity analysis was used to identify influential parameters within these modules. The findings revealed that only a few parameters significantly influenced model outputs. Moreover, the aquifer module outperformed the LID module in simulating subsurface water storage due to limitations in setting the initial saturation of the LID module. Furthermore, simulation accuracy was better during snow-free periods due to challenges in simulating snow dynamics during snow periods with the snowpack module. The calibrated models offer valuable insights into the long-term hydrological performance of infiltration swales, enabling practitioners to identify events that trigger flooding in these systems.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138606713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nature-based alternative-water landscapes for water security and green space health","authors":"Anna Louise Durkin, Felicity Roddick, John Fien","doi":"10.2166/bgs.2023.042","DOIUrl":"https://doi.org/10.2166/bgs.2023.042","url":null,"abstract":"\u0000 \u0000 This paper is concerned with highlighting and learning from Alternative-Water Urban Landscapes (AWULs) from around the world. Such systems contribute to issues such as water security and greenspace health. Nature-based methods for treating alternative-water can provide for secure water supplies in local landscapes and a wide range of social and environmental co-benefits. However, such treatment methods have raised concerns about efficacy, safety, public opinion, and cost, which have often led to a reliance on centralised, and high-energy and chemical treatment methods. To move forward, more understanding about AWULs is required. The aim of this research is to reveal principles for the design of nature-based AWULs. A framework for the analysis of AWULs was developed from relevant literature works. The framework comprised two sets of criteria based on conservative and innovative aspirations for the AWUL design. A search of AWUL and landscape literature revealed 26 precedents as suitable. These were then analysed using the two sets of criteria which revealed three key outcomes for nature-based AWUL applications. These included making use of free-water surface flow landscape-based treatment, large AWUL footprints and, partial decentralisation. These findings helped to fashion a set of design principles to guide and encourage adoption of nature-based AWUL by implementers.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138618675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Henry Beral, Danielle Dagenais, Jacques Brisson, Margit Kõiv-Vainik
{"title":"Impact of de-icing salt runoff in spring on bioretention efficiency","authors":"Henry Beral, Danielle Dagenais, Jacques Brisson, Margit Kõiv-Vainik","doi":"10.2166/bgs.2023.036","DOIUrl":"https://doi.org/10.2166/bgs.2023.036","url":null,"abstract":"Abstract We investigated the effect of de-icing salt in stormwater runoff on bioretention system hydrology and filtration of contaminants. Salt runoffs during the snow melt period were simulated in 20 mesocosms planted with 1 of 3 plant species (Cornus sericea, Juncus effusus and Iris versicolor) or left unplanted, and then watered with semi-synthetic stormwater runoffs supplemented with 4 NaCl concentrations (0, 250, 1,000 or 4,000 mg Cl/L). All bioretention mesocosms, irrespective of treatment, were efficient in reducing water volume, flow and pollution level. There was no phytotoxic effect of NaCl on plants, even at the highest NaCl concentration tested. Water volume reduction and flow rate were influenced by plant species, but salt concentration had no effect. Salt runoffs significantly increased the removal of some metals, such as Cr, Ni, Pb and Zn, but had no effect on nutrient removal. Because snowmelt laden with de-icing salt is of short duration and occurs during plant dormancy, plants in bioretention may be less affected by de-icing salt than previously thought, provided that salinity decreases rapidly to normal level in the soil water. The long-term effects of de-icing salt and general performance of bioretention should be further studied under full-scale conditions.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Morgane Bousquet, Martijn Kuller, Sandrine Lacroix, Peter A. Vanrolleghem
{"title":"A critical review of MCDA practices in planning of urban green spaces and NBS","authors":"Morgane Bousquet, Martijn Kuller, Sandrine Lacroix, Peter A. Vanrolleghem","doi":"10.2166/bgs.2023.132","DOIUrl":"https://doi.org/10.2166/bgs.2023.132","url":null,"abstract":"Abstract Green spaces and nature-based solutions (NBS) are increasingly considered by land-use planning policies to respond to the multiple challenges related to sustainable development. The multiple benefits brought by NBS make the use of multicriteria decision analysis (MCDA) essential to optimally balance their use. MCDA offers a catalog of methods allowing to structure problems with multiple objectives and to help adopt the optimal solution. However, NBS planning is a recent discipline and research is still ongoing to make this practice more common. We carried out a critical literature review on MCDA-NBS tools and practices. We conducted our literature research following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method on the Web of Science database and we selected 124 papers on the subject between 2000 and 2022. We present a state-of-the-art MCDA approach for NBS and green space planning by looking at where these practices are applied, why and how this process is conducted, and who is involved in it. We found that studies are usually conducted in the global North on a single case study with the help of experts involved in the criteria weighting phase and the help of GIS-MCDA tools often integrating a direct ranking method or the AHP method.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135872944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum: <i>Blue-Green Systems</i> 4 (1), 45–57: Understanding the effects of site-scale water-sensitive urban design (WSUD) in the urban water cycle: a review, Xuli Meng, http://dx.doi.org/10.2166/bgs.2022.026","authors":"","doi":"10.2166/bgs.2023.001","DOIUrl":"https://doi.org/10.2166/bgs.2023.001","url":null,"abstract":"","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135568076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Ampomah, Danielle Holt, Cole Smith, Virginia Smith, Kristin Sample-Lord, Jonathan Nyquist
{"title":"Modeling bioinfiltration surface dynamics through a hybrid geomorphic-infiltration model","authors":"Richard Ampomah, Danielle Holt, Cole Smith, Virginia Smith, Kristin Sample-Lord, Jonathan Nyquist","doi":"10.2166/bgs.2023.027","DOIUrl":"https://doi.org/10.2166/bgs.2023.027","url":null,"abstract":"Abstract Bioinfiltration systems are an increasingly prevalent mechanism for urban stormwater mitigation. One major challenge for the sustainability of bioinfiltration systems is erosion and channelization due to high bed shear stresses developed during large storm events. Sedimentation within these systems could also impact their performance as fine sediment may clog pathways necessary for infiltration. Understanding the geomorphology, shear stress, and sediment flux in the system can help predict maintenance needs associated with erosion and deposition. The current study introduces a framework for addressing this problem by combining a sediment transport model, FaSTMECH, with the Green-Ampt infiltration model. A comparison of observed and predicted ponding depths shows very good agreement (median Nash–Sutcliffe efficiency coefficient = 0.93) and demonstrates the ability of this novel framework in predicting the hydraulics and morphology within a bioswale bioinfiltration system. The framework introduced in this study opens the door to understanding sediment transport dynamics within a bioswale, which has the potential to advance planning and design to minimize impacts due to excessive erosion or deposition within bioswale bioinfiltration systems.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135815404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Raspati, S. Bruaset, Kamal Azrague, R. Ugarelli, T. Muthanna, Berit Time, E. Sivertsen
{"title":"Framework for the documentation of nature-based solutions for stormwater management","authors":"G. Raspati, S. Bruaset, Kamal Azrague, R. Ugarelli, T. Muthanna, Berit Time, E. Sivertsen","doi":"10.2166/bgs.2023.131","DOIUrl":"https://doi.org/10.2166/bgs.2023.131","url":null,"abstract":"\u0000 Nature-based solutions (NBSs) are widely implemented for stormwater management as such they have become important assets that require proper asset management at different stages of their service life. Hence, there is a need for systematic documentation of the applied NBS in accordance with the principles of infrastructure asset management and in combination with a set of requirements in the newly adopted National Standard NS3456:2022 in Norway. A framework for the documentation of NBSs was developed based on a systematic literature study, the experience gained from operating NBS pilots, and the interaction with stakeholders in a research centre, Klima 2050. The framework proposed a set of specific information in the form of a data structure covering a set of categories that presents information gathered during the planning, design, operation, and maintenance phases of the NBS. Both technical and sociotechnical aspects were included in the data structure. The data structure can be tailor-made depending on the type of NBS applied. The data structure was applied in documenting the NBS pilots of the research centre to demonstrate the framework's ability to help ensure a smooth flow of information from the actors involved in the planning, constructing, and operating of the NBS.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44509508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cost-effective method for the estimation of tree crown density in urban settings using a smartphone","authors":"Ivo Sippel, Lucie Moeller, Jan Friesen","doi":"10.2166/bgs.2023.029","DOIUrl":"https://doi.org/10.2166/bgs.2023.029","url":null,"abstract":"\u0000 \u0000 Urban trees provide vital ecosystem services, and assessing their health is crucial for managing urban infrastructure. Traditional methods of assessing crown density, an indicator of tree vitality, involve horizontal perspectives of unobstructed canopies. This study presents a novel method for estimating crown density in urban street trees that are surrounded by obstructing objects like buildings. The approach is based on photographs of the tree crown from defined positions using a smartphone. The method was validated on eight small-leaved lime trees in Leipzig during the 2021 vegetation period, demonstrating that crown density can be estimated by analyzing smartphone-photographs from various perspectives. The method provides data to quantify crown development and can be used to compare the vitality status of individual trees. The different perspectives are consistent in their estimates of crown density throughout the annual plateau phase of crown development. During the initial greening phase, crown photographs taken from angularly oriented positions showed a higher slope value than those taken from other positions. The method can also estimate the effect of blue-green infrastructures on tree vitality compared to regular urban tree planting methods. The approach is a practical and cost-effective tool for assessing tree vitality in spatially confined urban areas.","PeriodicalId":9337,"journal":{"name":"Blue-Green Systems","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47200657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}