{"title":"Electrochemical Sensing on a Nanostructured Silicon Mass Spectrometry Surface","authors":"Tsao Cw, Guo Zm","doi":"10.26420/austinjnanomednanotechnol.2021.1064","DOIUrl":"https://doi.org/10.26420/austinjnanomednanotechnol.2021.1064","url":null,"abstract":"Mass Spectrometry (MS) is a widely used analytical tool that provides quantitive information (molecule weight and intensity) of the analyte. Nanostructured silicon-based surface-assisted desorption/ionization mass spectrometry (LDI-MS) provides matrix-free and high sensitivity advantages. However, the mass spectrometer is a large and expensive tool limiting the onsite screening or point-of-care testing applications. Electrochemical sensing, on the other hand, is a simple and less-expensive detection method that can be used as portable onsite screening purposes. If the nanostructure silicon (nSi) surface can be used for electrochemical sensing, it opens the possibility of using nSi surface for both electrochemical sensing and Mass Spectrometry (MS) detection. Therefore, in this paper, we demonstrate the feasibility of using nSi surface for electrochemical sensing. Effects of the major nSi surface process parameters, including metal-assisted etching time and electroless Au decoration/deposition time to the electrochemical was evaluated.","PeriodicalId":93269,"journal":{"name":"Austin journal of nanomedicine & nanotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41406348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The \"<i>Nano</i>\" World in Photodynamic Therapy.","authors":"Huang-Chiao Huang, Tayyaba Hasan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Photodynamic Therapy (PDT) is an externally activated, photochemistry-based approach that generates cytotoxic reactive molecular species (RMS), which kill or modulate biological targets. PDT provides unique opportunities for applications of nanotechnology where light activation can trigger both direct RMS-mediated cytotoxic activity and the release of contents within the nanoconstructs (Figure 1). This process allows several species, working via different mechanisms and molecular targets to be activated or released in the right place and time, thus providing a distinctive approach to combination therapy. With advances in the development of miniaturized, even biodegradable, light sources and delivery systems, exciting possibilities of anatomical reach with PDT are being made possible. This brief article introduces aspects of interfaces of PDT and nanotechnology but, due to space constraints, makes no attempt to be a comprehensive review.</p>","PeriodicalId":93269,"journal":{"name":"Austin journal of nanomedicine & nanotechnology","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329842/pdf/nihms-1655595.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39285852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}