{"title":"Modeling, design and optimization of integrated renewable energy systems for electrification in remote communities","authors":"Kuanrong Qiu, Evgueniy Entchev","doi":"10.1186/s40807-024-00103-5","DOIUrl":"https://doi.org/10.1186/s40807-024-00103-5","url":null,"abstract":"Integrated renewable energy systems are becoming a promising option for electrification in remote communities. Integrating multiple renewable energy sources allows the communities to counteract the weaknesses of one renewable energy source with the strengths of another. This study aims to model, design and optimize integrated renewable energy systems consisting of solar photovoltaic (PV) panels, wind turbines, a biomass power generator, and storage batteries for applications in remote communities in Canada. Biomass is used as a fuel to produce electricity during periods when solar power and wind power are not capable of meeting the power demand. A methodology is developed to optimize the integrated renewable energy systems design, with the aim of minimizing the net present cost (NPC) and the levelized cost of electricity (LCOE) of the energy systems. Results show that the NPC is $3.61 M and the LCOE is $0.255/kWh for an optimized integrated renewable energy system in a sample remote community that has a peak power consumption of 238.7 kW and an average load demand of 2230 kWh/day. Through the present research, the integrated energy systems are evidenced to be an effective option for electrification in remote communities.","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seo Ono, Dines Chandra Santra, Ryoichi Kanega, Hajime Kawanami
{"title":"Advances in CO2 circulation hydrogen carriers and catalytic processes","authors":"Seo Ono, Dines Chandra Santra, Ryoichi Kanega, Hajime Kawanami","doi":"10.1186/s40807-024-00102-6","DOIUrl":"https://doi.org/10.1186/s40807-024-00102-6","url":null,"abstract":"Hydrogen serves as a renewable, clean energy carrier, and the critical development of technologies for safer and simpler storage and transportation is imperative for addressing global warming. There is also a growing demand for efforts to capture and utilize CO2 to tackle similar issues. Consequently, considerable attention has been drawn to carriers that chemically store hydrogen. Hydrogen can be stored and released through hydrogenation and dehydrogenation. Notably, the storage and release of hydrogen via CO2 hydrogenation and subsequent dehydrogenation of its hydrogenation product could potentially bolster the future hydrogen economy, rendering it an appealing option as a CO2 circulation hydrogen carrier (CCHC). To leverage CCHC for various applications, a catalytic process enabling the reversible storage and release of hydrogen is essential. This review focuses on CCHC candidates, such as methanol (MeOH), dimethyl ether (DME), and formic acid (FA), summarizing recent catalytic approaches for hydrogen production through pivotal dehydrogenation processes within the CCHC cycle.","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the potential role of decentralised biogas plants in meeting energy needs in sub-Saharan African countries: a techno-economic systems analysis","authors":"Thomas Robin, Ehiaze Ehimen","doi":"10.1186/s40807-024-00101-7","DOIUrl":"https://doi.org/10.1186/s40807-024-00101-7","url":null,"abstract":"To achieve the Sustainable Development Goals by 2030, low-income sub-Saharan African countries urgently need to electrify. Biogas production from anaerobic digestion could make a contribution to a solution to improved electricity generation and access in these regions. This study evaluates its feasibility using Malawi as a case study. The aim is to provide households with a continuous supply of gas for cooking and electricity. The study examines different sizes of fixed dome reactors (3, 6, 12 m3) and assumes individual household ownership of 2, 4, and 6 cows. Several feedstocks and conditions are considered, such as cow dung alone, co-generation of cow dung with human faeces, cow dung with grass, and cow dung with maize residue. The economic benefits of selling biogas and fertilisers are calculated, and the cost of construction for different sizes of reactors is determined. Results show that co-generation of cow dung and grass silage in the reactor of 12 m3 with six cows has a positive net present value (NPV) of $8962, while for a small farm with a 6 m3 reactor capacity, co-digestion of cow dung with maize residue is preferable. The feasibility of the technology depends heavily on current national economic conditions, such as inflation, electricity prices, and construction material costs. A sensitivity analysis estimated that a 25% increase in the cost of electricity could increase the net present value (NPV) from − $3345 to $1526 for the generation of biogas from cow dung alone. Overall, this technology could have a significant impact on the lives of low-income households in sub-Saharan Africa by improving their access to electricity and providing a source of income through the sale of biogas and digestate.","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Balancing short-term costs and long-term benefits: an analysis of the impact of hydroelectric power generation on electricity prices volatility in Cameroon","authors":"Etienne Bienvenu Akono, Vatis Christian Kemezang","doi":"10.1186/s40807-024-00099-y","DOIUrl":"https://doi.org/10.1186/s40807-024-00099-y","url":null,"abstract":"This study examines the short- and long-term impacts of various factors on the volatility and price of electricity in Cameroon, including hydroelectric power generation, economic growth, energy demand, and exchange rates from 2000 to 2019. The study uses an autoregressive distributed lag model. The study found that increasing hydroelectric power generation has both positive and negative impacts on electricity prices in the short and long term. While increasing the share of hydropower in overall energy production results in increased variation of electricity costs in the short term, it leads to significant price reductions in the long run. The study also found that economic growth has a considerable positive impact on the variation of power prices, while energy demand has a negative but insignificant effect on price volatility in the short term. Further, the study indicates that measures, such as encouraging SME engagement in renewable energy production, could improve the participation of local enterprises in the power industry and reduce the volatility of electricity prices. On the other hand, the study suggests that exchange rates could have a negative impact on electricity prices in the short term, but depreciation of the local currency could lower fuel costs and improve the availability of power. Overall, the study provides insights that can inform policymakers, energy regulators, and investors in making decisions that contribute to the efficient and sustainable development of Cameroon's electricity market. The study also highlights the need to prioritize power generation to stimulate economic growth and private investment while promoting renewable energy production.","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lina M. Shaker, Ahmed A. Al-Amiery, Mahdi M. Hanoon, Waleed K. Al-Azzawi, Abdul Amir H. Kadhum
{"title":"Examining the influence of thermal effects on solar cells: a comprehensive review","authors":"Lina M. Shaker, Ahmed A. Al-Amiery, Mahdi M. Hanoon, Waleed K. Al-Azzawi, Abdul Amir H. Kadhum","doi":"10.1186/s40807-024-00100-8","DOIUrl":"https://doi.org/10.1186/s40807-024-00100-8","url":null,"abstract":"Solar energy has emerged as a pivotal player in the transition towards sustainable and renewable power sources. However, the efficiency and longevity of solar cells, the cornerstone of harnessing this abundant energy source, are intrinsically linked to their operating temperatures. This comprehensive review delves into the intricate relationship between thermal effects and solar cell performance, elucidating the critical role that temperature plays in the overall efficacy of photovoltaic systems. The primary objective of this review is to provide a comprehensive examination of how temperature influences solar cells, with a focus on its impact on efficiency, voltage, current output, and overall stability. By synthesizing existing knowledge and exploring recent advances in the field, we aim to elucidate the underlying mechanisms of thermal effects and offer insights into mitigating their adverse consequences. Our review encompasses a thorough discussion of the fundamentals of solar cells, including their operation and various types, before delving into the intricacies of thermal effects. We present an overview of experimental techniques for thermal analysis, factors influencing temperature variations, and strategies to alleviate thermal stresses. Additionally, we offer real-world case studies and discuss future trends and research directions, providing a comprehensive roadmap for advancing solar cell technology. In an era where the harnessing of solar energy has become increasingly vital, understanding and addressing thermal effects are imperative to maximize the efficiency and longevity of solar cells. This review article serves as a valuable resource for researchers, engineers, and policymakers by shedding light on the significance of thermal effects on solar cell performance and guiding the pursuit of innovative solutions in the quest for more efficient and sustainable photovoltaic systems.","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wind speed prediction for site selection and reliable operation of wind power plants in coastal regions using machine learning algorithm variants","authors":"Tajrian Mollick, Galib Hashmi, Saifur Rahman Sabuj","doi":"10.1186/s40807-024-00098-z","DOIUrl":"https://doi.org/10.1186/s40807-024-00098-z","url":null,"abstract":"The challenge of predicting wind speeds to facilitate site selection and the consistent operation of wind power plants in coastal regions is a global concern. The output of wind turbines is subject to fluctuations corresponding to changes in wind speed. The unpredictable characteristics of wind patterns introduce vulnerabilities to wind power facilities in wind power plants. To address this unpredictability, an effective strategy involves forecasting wind speeds at specific locations during wind power plant operations. While previous research has explored various machine learning algorithms to tackle these issues, satisfactory results have not been achieved, and Bangladesh faces challenges in this regard, especially in low-wind speed areas. This study aims to identify the most accurate machine learning-based algorithm to forecast the short-term wind speed of two areas (Kutubdia and Cox's Bazar) located on the eastern coast of Bangladesh. Wind speed data for a span of 21.5 years, ranging from January 2001 to June 2022, were sourced from two outlets: the Bangladesh Meteorological Department and the website of NASA. Wind speed has been forecasted using 14 different regression-based machine learning models with a comprehensive overview. The results of the experiment highlight the exceptional predictive performance of a boosting-based ensemble method known as categorical boosting, especially in the context of forecasting wind speed data obtained from NASA. Based on the testing data, the evaluation yields remarkable results, with coefficients of determination measuring 0.8621 and 0.8758 for wind speed in Kutubdia and Cox's Bazar, respectively. The study underscores the critical importance of prioritizing optimal turbine site selection in the context of wind power facilities in Bangladesh. This approach can yield benefits for stakeholders, including engineers and project owners associated with wind projects.","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139666187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana C. R. Gonçalves, Xurxo Costoya, Raquel Nieto, Margarida L. R. Liberato
{"title":"Extreme weather events on energy systems: a comprehensive review on impacts, mitigation, and adaptation measures","authors":"Ana C. R. Gonçalves, Xurxo Costoya, Raquel Nieto, Margarida L. R. Liberato","doi":"10.1186/s40807-023-00097-6","DOIUrl":"https://doi.org/10.1186/s40807-023-00097-6","url":null,"abstract":"Energy systems (ES) are seriously affected by climate variability since energy demand and supply are dependent on atmospheric conditions at several time scales and by the impact of severe extreme weather events (EWEs). EWEs affect ES and can cause partial or total blackouts due to energy supply disruptions. These events significantly impact essential infrastructures and are considered one of the main causes of wide-area electrical disturbances worldwide. A comprehensive review is carried out based on 210 published studies using searches from Scopus and Google Scholar databases, to assess the impacts of EWEs—such as extreme storms, wind, and lightning events, heat, or cold waves, and freezing—on ES and their associated infrastructures—production, transmission, and distribution—worldwide, with a particular focus on wind energy systems (WES). Strategies and measures are critically reviewed and synthesized to minimize and mitigate the impact of EWEs, protect, and adapt the systems to maintain regular operations even when these events occur. Finally, physical modifications to systems and the incorporation of new technological solutions such as energy storage systems (ESS), distributed energy systems (DES), and microgrids, can enhance the network resilience and mitigate the EWEs effects. ","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"84 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139483098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental analysis on the effects of trace metals as micronutrients in enhancing biomethane production","authors":"C. Tintu Mary, K. Swarnalatha, S. J. Harishma","doi":"10.1186/s40807-023-00093-w","DOIUrl":"https://doi.org/10.1186/s40807-023-00093-w","url":null,"abstract":"Anaerobic digestion (AD) of microbial biomass has proven to be a significant breakthrough technique in producing biogas rich in methane. The quantity of biogas obtained by anaerobic digestion processes varies significantly based on the nature and characteristics of the substrates used. This research work focuses on the use of trace metals such as Fe, Cu, Zn, Mn, Mg, Ni in proper proportions to enhance the microbial consortium thus aiding in the production of biogas of desired quality. The substrate used for this study is Food Waste and Cow dung. Food waste from the college canteen was used as the substrate and cow dung was used as an inoculum for providing a catalytic effect in the anaerobic reactor. Food waste and cow dung in the ratio 75:25 was fed into the anaerobic digesters with varying concentrations of micronutrients supplemented to the reactors operating at a pH range maintained between 6.8 and 7.2 under room temperatures (22–27 ºC). The effect of these micronutrients on the anaerobic digestion process was observed by analysing the biogas yield, pH, alkalinity, total solids, and volatile solids of the samples. Sulphates of Fe, Cu, Mn, Ni and Chlorides of Zn and Mg was used in this study. Fe, Cu, Zn, Mn, Mg, Ni were fed to the anaerobic reactor at varying concentrations to arrive at the optimum dosage for the chosen substrates. The optimum dosage for the chosen substrate concentration was taken as that concentration which yielded maximum biogas yield with less retention time. Fe at concentrations varying from 1 mg/l–5 mg/l was fed to the anaerobic reactor and the optimum dosage for the chosen substrate concentration was noted at 1 mg/l. The reactor with an Fe concentration of 1 mg/l showed an increase in biogas production rate of about 68% compared to the sample without Fe supplementation as well as the ones with other dosages greater than 1 mg/l and less than 1 mg/l of Fe dosage. Each nutrient is subjected to an individual dosage analysis before arriving at the optimum dosage and then a mixture of the arrived optimum dosages will be analysed for further study. The process set-up will be conducted for a minimum retention period of 20 days and terminated when the results show a deep fall in the biogas production for consecutive days. Biogas produced for the nutrient supplementation of 1 mg/l of Fe, 0.5 mg/l of Cu, 1 mg/l of Zn, 0.5 mg/l of Mn, 1 mg/l of Mg and 0.5 mg/l of Ni yielded a biogas of 850 ml/g VS in 10 day retention time. Triplicate samples study were conducted and biogas yield measured daily to arrive at concordant results. The results showed an increase in the biomethane yields of the substrate by about 60% compared to the reactors which had no micronutrient supplementations. Furthermore, the study summarized that not all micronutrients are essential for a successful microbial metabolism to take place in an anaerobic digester as the micronutrient Manganese at varying dosages of 0.5 mg/l, 1 mg/l and 1.5 mg/l showed an antagonisti","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139463888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel Ikemba, Kim Song-hyun, Temiloluwa O Scott, Daniel R. E. Ewim, Sogo M. Abolarin, Akeeb Adepoju Fawole
{"title":"Analysis of solar energy potentials of five selected south-east cities in nigeria using deep learning algorithms","authors":"Samuel Ikemba, Kim Song-hyun, Temiloluwa O Scott, Daniel R. E. Ewim, Sogo M. Abolarin, Akeeb Adepoju Fawole","doi":"10.1186/s40807-023-00096-7","DOIUrl":"https://doi.org/10.1186/s40807-023-00096-7","url":null,"abstract":"This study presents a meticulous examination of the solar energy potential of five selected metropolitan cities (Abakaliki, Awka, Enugu, Owerri, and Umuahia) in Eastern part of Nigeria using deep learning algorithm, specifically the Long Short-Term Memory (LSTM) model. These cities, despite being characterized by extended rainy seasons and a high level of cloudiness, are suitable environment for solar power generation and investment opportunities. The employed methodology capitalized on the LSTM deep learning approach to analyze and predict energy generation, utilizing comprehensive hourly weather data from the National Airspace Agency (NASA). The data set comprised various parameters, such as date/time, solar azimuth angle, temperature, humidity, wind speed, wind direction, cloud cover, and power, enabling a thorough analysis of each city. To ensure accuracy, energy prediction capabilities were benchmarked against real-time datasets from a solar power plant in Ulsan, South Korea, thereby training and fine-tuning the model for precision. The LSTM model's performance metrics were maintained at a learning rate of 0.07, a batch size of 150, and a train-test split ratio of 0.8 to 0.2. Data validation exhibited a mean square error (MSE) of 0.01, demonstrating the model’s reliability. Results showed Enugu as having the highest solar energy potential, averaging 6.25 kWh/day, while Awka registered the most substantial electricity demand across various sectors. These findings highlight the substantial potential for photovoltaic (PV) power systems and advocate for the immediate implementation of renewable energy policy in the selected cities. These are expected to bring about significant implications for future renewable energy environmentally friendly investments in Nigeria and globally.","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139375565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaniz Farhana, Abu Shadate Faisal Mahamude, Kumaran Kadirgama, Rajan Jose
{"title":"Noble MXene nanofluids' impact on solar collector effectiveness enhancement: a CFD numerical evaluation","authors":"Kaniz Farhana, Abu Shadate Faisal Mahamude, Kumaran Kadirgama, Rajan Jose","doi":"10.1186/s40807-023-00090-z","DOIUrl":"https://doi.org/10.1186/s40807-023-00090-z","url":null,"abstract":"The thermal flat plate solar collector (FPSC) is a versatile solar harvesting system that may be integrated into various designs and base fluids. This study presents a novel investigation of using nanofluids to transfer thermal energy in an FPSC system. Using the governing equations in CFD simulations, the performance of an FPSC is studied numerically. The base fluid has been defined as a 60:40 blend of ethylene glycol and water. The effects of three distinct volume fractions of MXene nanofluids in the 0.01–0.1% range on the efficiency are investigated. The numerical findings revealed that employing MXene nanofluid increases outlet temperature efficiency by about 5.83%, 6.06%, and 6.31% when 0.01%, 0.05%, and 0.1% volume fractions of nanofluids are used, respectively. The research aims to create a validated numerical model that can be used to assess the effectiveness of FPSC utilizing ethylene glycol and water or other nanofluids of any mass fraction as a working fluid. To examine the overall effectiveness of the FPSC, a numerical model was created using Solidworks software and ANSYS ICEM CFD. The numerical findings revealed that (i) increasing the proportion of MXene nanofluid in the FPCS enhances efficiency to 0.1% volume fraction, and (ii) MXene nanoparticles may be used in the solar collector to improve efficiency.","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139096072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}