Brain Research Reviews最新文献

筛选
英文 中文
Interpreting actions: The goal behind mirror neuron function 解读动作:镜像神经元功能背后的目标
Brain Research Reviews Pub Date : 2011-06-24 DOI: 10.1016/j.brainresrev.2011.03.001
Brenda Ocampo, Ada Kritikos
{"title":"Interpreting actions: The goal behind mirror neuron function","authors":"Brenda Ocampo,&nbsp;Ada Kritikos","doi":"10.1016/j.brainresrev.2011.03.001","DOIUrl":"10.1016/j.brainresrev.2011.03.001","url":null,"abstract":"<div><p><span>Crucial to our everyday social functioning is an ability to interpret the behaviors of others. This process involves a rapid understanding of what a given action is not only in a physical sense (e.g., a precision grip around the stem of a wine glass) but also in a semantic sense (e.g., an invitation to “cheers”). The functional properties of fronto-parietal </span>mirror neurons<span> (MNs), which respond to both observed and executed actions, have been a topic of much debate in the cognitive neuroscience literature. The controversy surrounds the role of the “mirror neuron system” in action understanding: do MNs allow us to comprehend others' actions by allowing us to internally represent their behaviors or do they simply activate a direct motor representation of the perceived act without recourse to its meaning? This review outlines evidence from both human and primate literatures, indicating the importance of end-goals in action representations within the motor system and their predominance in influencing action plans. We integrate this evidence with recent views regarding the complex and dynamic nature of the mirror neuron system and its ability to respond to broad motor outcomes.</span></p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"67 1","pages":"Pages 260-267"},"PeriodicalIF":0.0,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2011.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29734230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Automated reconstruction of neuronal morphology: An overview 神经元形态的自动重建:概述
Brain Research Reviews Pub Date : 2011-06-24 DOI: 10.1016/j.brainresrev.2010.11.003
Duncan E. Donohue, Giorgio A. Ascoli
{"title":"Automated reconstruction of neuronal morphology: An overview","authors":"Duncan E. Donohue,&nbsp;Giorgio A. Ascoli","doi":"10.1016/j.brainresrev.2010.11.003","DOIUrl":"10.1016/j.brainresrev.2010.11.003","url":null,"abstract":"<div><p><span>Digital reconstruction of neuronal morphology is a powerful technique for investigating the nervous system. This process consists of tracing the axonal and dendritic arbors of neurons imaged by optical microscopy into a geometrical format suitable for quantitative analysis and computational modeling. Algorithmic automation of neuronal tracing promises to increase the speed, accuracy, and reproducibility of morphological reconstructions. Together with recent breakthroughs in cellular imaging and accelerating progress in optical microscopy, automated reconstruction of neuronal morphology will play a central role in the development of high throughput screening and the acquisition of </span>connectomic data. Yet, despite continuous advances in image processing algorithms, to date manual tracing remains the overwhelming choice for digitizing neuronal morphology. We summarize the issues involved in automated reconstruction, overview the available techniques, and provide a realistic assessment of future perspectives.</p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"67 1","pages":"Pages 94-102"},"PeriodicalIF":0.0,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2010.11.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29502800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 149
The role of the central noradrenergic system in behavioral inhibition 中枢去肾上腺素能系统在行为抑制中的作用
Brain Research Reviews Pub Date : 2011-06-24 DOI: 10.1016/j.brainresrev.2011.02.002
Eric A. Stone , Yan Lin , Yasmeen Sarfraz , David Quartermain
{"title":"The role of the central noradrenergic system in behavioral inhibition","authors":"Eric A. Stone ,&nbsp;Yan Lin ,&nbsp;Yasmeen Sarfraz ,&nbsp;David Quartermain","doi":"10.1016/j.brainresrev.2011.02.002","DOIUrl":"10.1016/j.brainresrev.2011.02.002","url":null,"abstract":"<div><p><span>Although the central noradrenergic system has been shown to be involved in a number of behavioral and neurophysiological processes, the relation of these to its role in depressive illness has been difficult to define. The present review discusses the hypothesis that one of its chief functions that may be related to affective illness is the inhibition of behavioral activation, a prominent symptom of the disorder. This hypothesis is found to be consistent with most previous neuropsychopharmacological and immunohistochemical experiments on active behavior in rodents in a variety of experimental conditions using manipulation of neurotransmission at both </span>locus coeruleus<span> and forebrain adrenergic receptors. The findings support a mechanism in which high rates of noradrenergic neural activity suppress the neural activity of principal neurons in forebrain regions mediating active behavior. The suppression may be mediated through postsynaptic galaninergic and adrenergic receptors, and via the release of corticotrophin-releasing hormone. The hypothesis is consistent with clinical evidence for central noradrenergic system hyperactivity in depressives and with the view that this hyperactivity is a contributing etiological factor in the disorder. A similar mechanism may underlie the ability of the noradrenergic system to suppress seizure activity suggesting that inhibition of the spread of neural activation may be a unifying function.</span></p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"67 1","pages":"Pages 193-208"},"PeriodicalIF":0.0,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2011.02.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29668161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Brain regions and genes affecting limb-clasping responses 影响肢体紧握反应的大脑区域和基因
Brain Research Reviews Pub Date : 2011-06-24 DOI: 10.1016/j.brainresrev.2011.02.005
R. Lalonde , C. Strazielle
{"title":"Brain regions and genes affecting limb-clasping responses","authors":"R. Lalonde ,&nbsp;C. Strazielle","doi":"10.1016/j.brainresrev.2011.02.005","DOIUrl":"10.1016/j.brainresrev.2011.02.005","url":null,"abstract":"<div><p><span>Adult rodents picked up by the tail and slowly descending towards a horizontal surface extend all four limbs in anticipation of contact. Mouse mutants with pathologies in various brain regions and the spinal cord display instead a flexion response, often characterized by paw-clasping and a bat-like posture. These phenotypes are observed in mice with lesions in cerebellum, basal ganglia, and neocortex, as well as transgenic models of </span>Alzheimer's disease<span>. The underlying mechanism appears to include cerebello-cortico-reticular and cortico-striato-pallido-reticular pathways, possibly triggered by changes in noradrenaline and serotonin transmission.</span></p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"67 1","pages":"Pages 252-259"},"PeriodicalIF":0.0,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2011.02.005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29701561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 100
The rise and fall of Golgi's school 高尔基学派的兴衰
Brain Research Reviews Pub Date : 2011-01-07 DOI: 10.1016/j.brainresrev.2010.05.001
Paolo Mazzarello
{"title":"The rise and fall of Golgi's school","authors":"Paolo Mazzarello","doi":"10.1016/j.brainresrev.2010.05.001","DOIUrl":"10.1016/j.brainresrev.2010.05.001","url":null,"abstract":"<div><p>The Camillo Golgi's school of Histology and General Pathology in Pavia played an important role in the development of medical-biological studies in Italy in the period after Unification of the state. Founded around 1880 when Golgi (1843–1926) began to wield power at the University of Pavia, the school soon became famous for the distinctive morphological basis of its studies. Many of its staff members made important discoveries and won international acclaim. The school however went into decline after 1910 because of its rigid adherence to the morphological approach that had characterized its golden years at a time when the international scientific world was developing other fundamental methodological criteria for medical–biological studies.</p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"66 1","pages":"Pages 54-67"},"PeriodicalIF":0.0,"publicationDate":"2011-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2010.05.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29094741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Neurite outgrowth: This process, first discovered by Santiago Ramon y Cajal, is sustained by the exocytosis of two distinct types of vesicles 神经突生长:这一过程由Santiago Ramon y Cajal首先发现,由两种不同类型的囊泡的胞吐作用维持
Brain Research Reviews Pub Date : 2011-01-07 DOI: 10.1016/j.brainresrev.2010.06.004
Jacopo Meldolesi
{"title":"Neurite outgrowth: This process, first discovered by Santiago Ramon y Cajal, is sustained by the exocytosis of two distinct types of vesicles","authors":"Jacopo Meldolesi","doi":"10.1016/j.brainresrev.2010.06.004","DOIUrl":"10.1016/j.brainresrev.2010.06.004","url":null,"abstract":"<div><p><span><span><span>Neurite outgrowth is a fundamental process in the differentiation of neurons. The first, seminal study documenting the generation of “appendages” (now known as filopodia and lamellipodia) on the “cones d'accroissement,” the specialized </span>growth cones at the tips of </span>neurites, was reported by Cajal still in the XIXth century, investigating chicken neurons embryos stained by the Golgi's reazione nera. Since then, studies have continued using, in addition to brain tissues, powerful </span><em>in vitro</em><span><span><span> models, i.e. primary cultures of pyramidal neurons from the hippocampus and </span>neurosecretory cell lines, in particular PC12 cells. These studies have documented that neuronal neurites, upon sprouting from the cell body, give rise to both axons and dendrites. The specificity of these differentiated neurites depends on the diffusion barrier established at the initial segment of the axon and on the specialized domains, spines and presynaptic boutons, assembled around complexes of </span>scaffold proteins<span>. The two main, coordinate mechanisms that support neurite outgrowth are (a) the rearrangement of the cytoskeleton and (b) the expansion of the plasma membrane due to the exo/endocytosis of specific vesicles, distinct from those filled with neurotransmitters (clear and dense-core vesicles). The latter process is the main task of this review. In axons the surface-expanding exocytoses are concentrated at the growth cones; in dendrites they may be more distributed along the shaft. At least two types of exocytic vesicles appear to be involved, the enlargeosomes, positive for VAMP4, during early phases of development, and Ti-VAMP-positive vesicles later on. Outgrowth studies, that are now intensely pursued, have already yielded results of great importance in brain cell biology and function, and are playing an increasing role in pathology and medicine.</span></span></p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"66 1","pages":"Pages 246-255"},"PeriodicalIF":0.0,"publicationDate":"2011-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2010.06.004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29099178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
The cerebellar network: From structure to function and dynamics 小脑网络:从结构到功能和动力学
Brain Research Reviews Pub Date : 2011-01-07 DOI: 10.1016/j.brainresrev.2010.10.002
E. D'Angelo , P. Mazzarello , F. Prestori , J. Mapelli , S. Solinas , P. Lombardo , E. Cesana , D. Gandolfi , L. Congi
{"title":"The cerebellar network: From structure to function and dynamics","authors":"E. D'Angelo ,&nbsp;P. Mazzarello ,&nbsp;F. Prestori ,&nbsp;J. Mapelli ,&nbsp;S. Solinas ,&nbsp;P. Lombardo ,&nbsp;E. Cesana ,&nbsp;D. Gandolfi ,&nbsp;L. Congi","doi":"10.1016/j.brainresrev.2010.10.002","DOIUrl":"10.1016/j.brainresrev.2010.10.002","url":null,"abstract":"<div><p>Since the discoveries of Camillo Golgi and Ramón y Cajal, the precise cellular organization of the cerebellum<span> has inspired major computational theories, which have then influenced the scientific thought not only on the cerebellar function but also on the brain as a whole. However, six major issues revealing a discrepancy between morphologically inspired hypothesis and function have emerged. (1) The cerebellar granular layer does not simply operate a simple combinatorial decorrelation of the inputs but performs more complex non-linear spatio-temporal transformations and is endowed with synaptic plasticity<span>. (2) Transmission along the ascending axon and parallel fibers does not lead to beam formation but rather to vertical columns of activation. (3) The olivo-cerebellar loop could perform complex timing operations rather than error detection and teaching. (4) Purkinje cell firing dynamics are much more complex than for a linear integrator and include pacemaking, burst–pause discharges, and bistable states in response to mossy and climbing fiber synaptic inputs. (5) Long-term synaptic plasticity is far more complex than traditional parallel fiber LTD and involves also other cerebellar synapses. (6) Oscillation and resonance could set up coherent cycles of activity designing a functional geometry that goes far beyond pre-wired anatomical circuits. These observations clearly show that structure is not sufficient to explain function and that a precise knowledge on dynamics is critical to understand how the cerebellar circuit operates.</span></span></p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"66 1","pages":"Pages 5-15"},"PeriodicalIF":0.0,"publicationDate":"2011-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2010.10.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29357633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giuseppe Moruzzi: A tribute to a “formidable” scientist and a “formidable” man 朱塞佩·莫鲁奇:向一位“令人敬畏”的科学家和“令人敬畏”的人致敬
Brain Research Reviews Pub Date : 2011-01-07 DOI: 10.1016/j.brainresrev.2010.09.004
Rita Levi-Montalcini, Marco Piccolino, Nicholas J. Wade
{"title":"Giuseppe Moruzzi: A tribute to a “formidable” scientist and a “formidable” man","authors":"Rita Levi-Montalcini,&nbsp;Marco Piccolino,&nbsp;Nicholas J. Wade","doi":"10.1016/j.brainresrev.2010.09.004","DOIUrl":"10.1016/j.brainresrev.2010.09.004","url":null,"abstract":"<div><p>Giuseppe Moruzzi was born one century ago; he was an outstanding Italian neurophysiologist, who was particularly famous for his contributions to the study of the mechanisms underlying the control of the sleep–waking cycle in mammals. In 1990, Rita Levi-Montalcini, Moruzzi's great friend and admirer, used the occasion of an invitation by the University of Parma, where Moruzzi graduated in medicine in 1933, to celebrate Moruzzi's scientific achievements. She wished to pay a tribute to Moruzzi's human and ethical qualities by portraying him as a “perfect model” for the young generation wishing to pursue scientific research. The transcription of “Rita's” tribute to Moruzzi links two of the greatest figures of Italian neuroscience and also provides a lively account of how the personal histories of two promising young scientists intertwined with the great and tragic events of world history in the past century.</p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"66 1","pages":"Pages 256-269"},"PeriodicalIF":0.0,"publicationDate":"2011-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2010.09.004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40064133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis 神经胶质在癫痫相关神经病理、神经炎症和神经发生中的作用
Brain Research Reviews Pub Date : 2011-01-07 DOI: 10.1016/j.brainresrev.2010.09.002
Maira L. Foresti , Gabriel M. Arisi , Lee A. Shapiro
{"title":"Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis","authors":"Maira L. Foresti ,&nbsp;Gabriel M. Arisi ,&nbsp;Lee A. Shapiro","doi":"10.1016/j.brainresrev.2010.09.002","DOIUrl":"10.1016/j.brainresrev.2010.09.002","url":null,"abstract":"<div><p><span><span><span>The black reaction allowed Golgi to describe with amazing detail the morphology of glial cells as well as their proximal location and intimate connections with neurons and blood vessels. Based on this location, Golgi hypothesized that glial cells were functional units in the nervous system and were not merely a structural support medium. Relatively recent advances have confirmed the importance of glial cells in </span>nervous system function and disease. The occurrence of </span>gliosis is considered the hallmark of damaged tissue. Gliosis can differentially influence disease development and it is a prevailing characteristic of </span>temporal lobe epilepsy<span>. Its presence in the epileptic hippocampi might contribute to hyperexcitability, the development of aberrant neurogenic changes and inflammatory processes related to seizures. Considering the accumulating data regarding the pathological role of glial cells in epilepsy, novel therapeutic approaches that target glial cells are being explored. Such therapeutic approaches directed to glial cells present a novel perspective for the management of refractory pathologies.</span></p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"66 1","pages":"Pages 115-122"},"PeriodicalIF":0.0,"publicationDate":"2011-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2010.09.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40064135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 52
The first images of nerve cells: Golgi on the olfactory bulb 1875 第一张神经细胞的图像:高尔基体在嗅球上,1875年
Brain Research Reviews Pub Date : 2011-01-07 DOI: 10.1016/j.brainresrev.2010.09.009
Gordon M. Shepherd , Charles A. Greer , Paolo Mazzarello , Marco Sassoè-Pognetto
{"title":"The first images of nerve cells: Golgi on the olfactory bulb 1875","authors":"Gordon M. Shepherd ,&nbsp;Charles A. Greer ,&nbsp;Paolo Mazzarello ,&nbsp;Marco Sassoè-Pognetto","doi":"10.1016/j.brainresrev.2010.09.009","DOIUrl":"10.1016/j.brainresrev.2010.09.009","url":null,"abstract":"<div><p>The third paper by Camillo Golgi on his new method was on the olfactory bulb. This paper has never been translated into English, but is of special interest both for its pioneering description of olfactory bulb cells and for containing the first illustration by Golgi of cells stained with his new method. A translation into English is provided in this paper, together with commentaries on the significant points in his descriptions. These results are placed in the perspective of Cajal's subsequent first publication on the olfactory bulb and brief mention of the work of other early histologists. This perspective allows one to see more clearly Golgi's fundamental contributions to the olfactory bulb in particular and to the description of the neuronal architecture of the brain in general.</p></div>","PeriodicalId":9291,"journal":{"name":"Brain Research Reviews","volume":"66 1","pages":"Pages 92-105"},"PeriodicalIF":0.0,"publicationDate":"2011-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brainresrev.2010.09.009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29347176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信