Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)最新文献

筛选
英文 中文
Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients. 全脑包缩与病理:脑室肿大患者的验证。
Aaron Carass, Muhan Shao, Xiang Li, Blake E Dewey, Ari M Blitz, Snehashis Roy, Dzung L Pham, Jerry L Prince, Lotta M Ellingsen
{"title":"Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients.","authors":"Aaron Carass,&nbsp;Muhan Shao,&nbsp;Xiang Li,&nbsp;Blake E Dewey,&nbsp;Ari M Blitz,&nbsp;Snehashis Roy,&nbsp;Dzung L Pham,&nbsp;Jerry L Prince,&nbsp;Lotta M Ellingsen","doi":"10.1007/978-3-319-67434-6_3","DOIUrl":"https://doi.org/10.1007/978-3-319-67434-6_3","url":null,"abstract":"<p><p>Numerous brain disorders are associated with ventriculomegaly; normal pressure hydrocephalus (NPH) is one example. NPH presents with dementia-like symptoms and is often misdiagnosed as Alzheimer's due to its chronic nature and nonspecific presenting symptoms. However, unlike other forms of dementia NPH can be treated surgically with an over 80% success rate on appropriately selected patients. Accurate assessment of the ventricles, in particular its sub-compartments, is required to diagnose the condition. Existing segmentation algorithms fail to accurately identify the ventricles in patients with such extreme pathology. We present an improvement to a whole brain segmentation approach that accurately identifies the ventricles and parcellates them into four sub-compartments. Our work is a combination of patch-based tissue segmentation and multi-atlas registration-based labeling. We include a validation on NPH patients, demonstrating superior performance against state-of-the-art methods.</p>","PeriodicalId":92111,"journal":{"name":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","volume":"10530 ","pages":"20-28"},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67434-6_3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35845567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion. 基于关节标签融合的多发性硬化症病灶分割。
Mengjin Dong, Ipek Oguz, Nagesh Subbana, Peter Calabresi, Russell T Shinohara, Paul Yushkevich
{"title":"Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion.","authors":"Mengjin Dong,&nbsp;Ipek Oguz,&nbsp;Nagesh Subbana,&nbsp;Peter Calabresi,&nbsp;Russell T Shinohara,&nbsp;Paul Yushkevich","doi":"10.1007/978-3-319-67434-6_16","DOIUrl":"https://doi.org/10.1007/978-3-319-67434-6_16","url":null,"abstract":"<p><p>This paper adapts the joint label fusion (JLF) multi-atlas image segmentation algorithm to the problem of multiple sclerosis (MS) lesion segmentation in multi-modal MRI. Conventionally, JLF requires a set of atlas images to be co-registered to the target image using deformable registration. However, given the variable spatial distribution of lesions in the brain, whole-brain deformable registration is unlikely to line up lesions between atlases and the target image. As a solution, we propose to first pre-segment the target image using an intensity regression based technique, yielding a set of \"candidate\" lesions. Each \"candidate\" lesion is then matched to a set of similar lesions in the atlas based on location and size; and deformable registration and JLF are applied at the level of the \"candidate\" lesion. The approach is evaluated on a dataset of 74 subjects with MS and shown to improve Dice similarity coefficient with reference manual segmentation by 12% over intensity regression technique.</p>","PeriodicalId":92111,"journal":{"name":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","volume":"10530 ","pages":"138-145"},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67434-6_16","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36055247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Learning-Based Estimation of Functional Correlation Tensors in White Matter for Early Diagnosis of Mild Cognitive Impairment. 基于学习的脑白质功能相关张量评估在轻度认知障碍早期诊断中的应用。
Lichi Zhang, Han Zhang, Xiaobo Chen, Qian Wang, Pew-Thian Yap, Dinggang Shen
{"title":"Learning-Based Estimation of Functional Correlation Tensors in White Matter for Early Diagnosis of Mild Cognitive Impairment.","authors":"Lichi Zhang,&nbsp;Han Zhang,&nbsp;Xiaobo Chen,&nbsp;Qian Wang,&nbsp;Pew-Thian Yap,&nbsp;Dinggang Shen","doi":"10.1007/978-3-319-67434-6_8","DOIUrl":"https://doi.org/10.1007/978-3-319-67434-6_8","url":null,"abstract":"<p><p>It has been recently demonstrated that the local BOLD signals in resting-state fMRI (rs-fMRI) can be captured for the white matter (WM) by functional correlation tensors (FCTs). FCTs provide similar orientation information as diffusion tensors (DTs), and also functional information concerning brain dynamics. However, FCTs are susceptible to noise due to the low signal-to-noise ratio nature of WM BOLD signals. Here we introduce a robust FCT estimation method to facilitate individualized diagnosis. <i>First</i>, we develop a noise-tolerating patch-based approach to measure spatiotemporal correlations of local BOLD signals. <i>Second</i>, it is also enhanced by DTs predicted from the input rs-fMRI using a learning-based regression model. We evaluate our trained regressor using the high-resolution HCP dataset. The regressor is then applied to estimate the robust FCTs for subjects in the ADNI2 dataset. We demonstrate for the first time the disease diagnostic value of robust FCTs.</p>","PeriodicalId":92111,"journal":{"name":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","volume":"10530 ","pages":"65-73"},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67434-6_8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35820774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain Image Labeling Using Multi-atlas Guided 3D Fully Convolutional Networks. 利用多图谱引导的三维全卷积网络进行大脑图像标注
Longwei Fang, Lichi Zhang, Dong Nie, Xiaohuan Cao, Khosro Bahrami, Huiguang He, Dinggang Shen
{"title":"Brain Image Labeling Using Multi-atlas Guided 3D Fully Convolutional Networks.","authors":"Longwei Fang, Lichi Zhang, Dong Nie, Xiaohuan Cao, Khosro Bahrami, Huiguang He, Dinggang Shen","doi":"10.1007/978-3-319-67434-6_2","DOIUrl":"10.1007/978-3-319-67434-6_2","url":null,"abstract":"<p><p>Automatic labeling of anatomical structures in brain images plays an important role in neuroimaging analysis. Among all methods, multi-atlas based segmentation methods are widely used, due to their robustness in propagating prior label information. However, non-linear registration is always needed, which is time-consuming. Alternatively, the patch-based methods have been proposed to relax the requirement of image registration, but the labeling is often determined independently by the target image information, without getting direct assistance from the atlases. To address these limitations, in this paper, we propose a multi-atlas guided 3D fully convolutional networks (FCN) for brain image labeling. Specifically, multi-atlas based guidance is incorporated during the network learning. Based on this, the discriminative of the FCN is boosted, which eventually contribute to accurate prediction. Experiments show that the use of multi-atlas guidance improves the brain labeling performance.</p>","PeriodicalId":92111,"journal":{"name":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","volume":"10530 ","pages":"12-19"},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669261/pdf/nihms915521.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35574178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
4D Multi-atlas Label Fusion using Longitudinal Images. 利用纵向图像进行 4D 多图集标签融合。
Yuankai Huo, Susan M Resnick, Bennett A Landman
{"title":"4D Multi-atlas Label Fusion using Longitudinal Images.","authors":"Yuankai Huo, Susan M Resnick, Bennett A Landman","doi":"10.1007/978-3-319-67434-6_1","DOIUrl":"10.1007/978-3-319-67434-6_1","url":null,"abstract":"<p><p>Longitudinal reproducibility is an essential concern in automated medical image segmentation, yet has proven to be an elusive objective as manual brain structure tracings have shown more than 10% variability. To improve reproducibility, longitudinal segmentation (4D) approaches have been investigated to reconcile temporal variations with traditional 3D approaches. In the past decade, multi-atlas label fusion has become a state-of-the-art segmentation technique for 3D image and many efforts have been made to adapt it to a 4D longitudinal fashion. However, the previous methods were either limited by using application specified energy function (e.g., surface fusion and multi model fusion) or only considered temporal smoothness on two consecutive time points (t and t+1) under sparsity assumption. Therefore, a 4D multi-atlas label fusion theory for general label fusion purpose and simultaneously considering temporal consistency on all time points is appealing. Herein, we propose a novel longitudinal label fusion algorithm, called 4D joint label fusion (4DJLF), to incorporate the temporal consistency modeling via non-local patch-intensity covariance models. The advantages of 4DJLF include: (1) 4DJLF is under the general label fusion framework by simultaneously incorporating the spatial and temporal covariance on all longitudinal time points. (2) The proposed algorithm is a longitudinal generalization of a leading joint label fusion method (JLF) that has proven adaptable to a wide variety of applications. (3) The spatial temporal consistency of atlases is modeled in a probabilistic model inspired from both voting based and statistical fusion. The proposed approach improves the consistency of the longitudinal segmentation while retaining sensitivity compared with original JLF approach using the same set of atlases. The method is available online in open-source.</p>","PeriodicalId":92111,"journal":{"name":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","volume":"10530 ","pages":"3-11"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5793940/pdf/nihms893871.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35792370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信