Aaron Carass, Muhan Shao, Xiang Li, Blake E Dewey, Ari M Blitz, Snehashis Roy, Dzung L Pham, Jerry L Prince, Lotta M Ellingsen
{"title":"全脑包缩与病理:脑室肿大患者的验证。","authors":"Aaron Carass, Muhan Shao, Xiang Li, Blake E Dewey, Ari M Blitz, Snehashis Roy, Dzung L Pham, Jerry L Prince, Lotta M Ellingsen","doi":"10.1007/978-3-319-67434-6_3","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous brain disorders are associated with ventriculomegaly; normal pressure hydrocephalus (NPH) is one example. NPH presents with dementia-like symptoms and is often misdiagnosed as Alzheimer's due to its chronic nature and nonspecific presenting symptoms. However, unlike other forms of dementia NPH can be treated surgically with an over 80% success rate on appropriately selected patients. Accurate assessment of the ventricles, in particular its sub-compartments, is required to diagnose the condition. Existing segmentation algorithms fail to accurately identify the ventricles in patients with such extreme pathology. We present an improvement to a whole brain segmentation approach that accurately identifies the ventricles and parcellates them into four sub-compartments. Our work is a combination of patch-based tissue segmentation and multi-atlas registration-based labeling. We include a validation on NPH patients, demonstrating superior performance against state-of-the-art methods.</p>","PeriodicalId":92111,"journal":{"name":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","volume":"10530 ","pages":"20-28"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67434-6_3","citationCount":"11","resultStr":"{\"title\":\"Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients.\",\"authors\":\"Aaron Carass, Muhan Shao, Xiang Li, Blake E Dewey, Ari M Blitz, Snehashis Roy, Dzung L Pham, Jerry L Prince, Lotta M Ellingsen\",\"doi\":\"10.1007/978-3-319-67434-6_3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous brain disorders are associated with ventriculomegaly; normal pressure hydrocephalus (NPH) is one example. NPH presents with dementia-like symptoms and is often misdiagnosed as Alzheimer's due to its chronic nature and nonspecific presenting symptoms. However, unlike other forms of dementia NPH can be treated surgically with an over 80% success rate on appropriately selected patients. Accurate assessment of the ventricles, in particular its sub-compartments, is required to diagnose the condition. Existing segmentation algorithms fail to accurately identify the ventricles in patients with such extreme pathology. We present an improvement to a whole brain segmentation approach that accurately identifies the ventricles and parcellates them into four sub-compartments. Our work is a combination of patch-based tissue segmentation and multi-atlas registration-based labeling. We include a validation on NPH patients, demonstrating superior performance against state-of-the-art methods.</p>\",\"PeriodicalId\":92111,\"journal\":{\"name\":\"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)\",\"volume\":\"10530 \",\"pages\":\"20-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-67434-6_3\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-67434-6_3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-67434-6_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients.
Numerous brain disorders are associated with ventriculomegaly; normal pressure hydrocephalus (NPH) is one example. NPH presents with dementia-like symptoms and is often misdiagnosed as Alzheimer's due to its chronic nature and nonspecific presenting symptoms. However, unlike other forms of dementia NPH can be treated surgically with an over 80% success rate on appropriately selected patients. Accurate assessment of the ventricles, in particular its sub-compartments, is required to diagnose the condition. Existing segmentation algorithms fail to accurately identify the ventricles in patients with such extreme pathology. We present an improvement to a whole brain segmentation approach that accurately identifies the ventricles and parcellates them into four sub-compartments. Our work is a combination of patch-based tissue segmentation and multi-atlas registration-based labeling. We include a validation on NPH patients, demonstrating superior performance against state-of-the-art methods.