Proceedings of the Annual Conference of the Prognostics and Health Management Society. Prognostics and Health Management Society. Conference最新文献

筛选
英文 中文
System Interdependency Modeling in the Design of Prognostic and Health Management Systems in Smart Manufacturing. 智能制造预测与健康管理系统设计中的系统相互依赖模型。
M L Malinowski, P A Beling, Y Y Haimes, A LaViers, J A Marvel, B A Weiss
{"title":"System Interdependency Modeling in the Design of Prognostic and Health Management Systems in Smart Manufacturing.","authors":"M L Malinowski, P A Beling, Y Y Haimes, A LaViers, J A Marvel, B A Weiss","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The fields of risk analysis and prognostics and health management (PHM) have developed in a largely independent fashion. However, both fields share a common core goal. They aspire to manage future adverse consequences associated with prospective dysfunctions of the systems under consideration due to internal or external forces. This paper describes how two prominent risk analysis theories and methodologies - Hierarchical Holographic Modeling (HHM) and Risk Filtering, Ranking, and Management (RFRM) - can be adapted to support the design of PHM systems in the context of smart manufacturing processes. Specifically, the proposed methodologies will be used to identify targets - components, subsystems, or systems - that would most benefit from a PHM system in regards to achieving the following objectives: minimizing cost, minimizing production/maintenance time, maximizing system remaining usable life (RUL), maximizing product quality, and maximizing product output. HHM is a comprehensive modeling theory and methodology that is grounded on the premise that no system can be modeled effectively from a single perspective. It can also be used as an inductive method for scenario structuring to identify emergent forced changes (EFCs) in a system. EFCs connote trends in external or internal sources of risk to a system that may adversely affect specific states of the system. An important aspect of proactive risk management includes bolstering the resilience of the system for specific EFCs by appropriately controlling the states. Risk scenarios for specific EFCs can be the basis for the design of prognostic and diagnostic systems that provide real-time predictions and recognition of scenario changes. The HHM methodology includes visual modeling techniques that can enhance stakeholders' understanding of shared states, resources, objectives and constraints among the interdependent and interconnected subsystems of smart manufacturing systems. In risk analysis, HHM is often paired with Risk Filtering, Ranking, and Management (RFRM). The RFRM process provides the users, (e.g., technology developers, original equipment manufacturers (OEMs), technology integrators, manufacturers), with the most critical risks to the objectives, which can be used to identify the most critical components and subsystems that would most benefit from a PHM system. A case study is presented in which HHM and RFRM are adapted for PHM in the context of an active manufacturing facility located in the United States. The methodologies help to identify the critical risks to the manufacturing process, and the major components and subsystems that would most benefit from a developed PHM system.</p>","PeriodicalId":91951,"journal":{"name":"Proceedings of the Annual Conference of the Prognostics and Health Management Society. Prognostics and Health Management Society. Conference","volume":"6 ","pages":"038"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35131342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Multi-scale PHM for Robotic Assembly Processes. 机器人装配过程的自适应多尺度PHM。
Benjamin Y Choo, Peter A Beling, Amy E LaViers, Jeremy A Marvel, Brian A Weiss
{"title":"Adaptive Multi-scale PHM for Robotic Assembly Processes.","authors":"Benjamin Y Choo, Peter A Beling, Amy E LaViers, Jeremy A Marvel, Brian A Weiss","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Adaptive multiscale prognostics and health management (AM-PHM) is a methodology designed to support PHM in smart manufacturing systems. As a rule, PHM information is not used in high-level decision-making in manufacturing systems. AM-PHM leverages and integrates component-level PHM information with hierarchical relationships across the component, machine, work cell, and production line levels in a manufacturing system. The AM-PHM methodology enables the creation of actionable prognostic and diagnostic intelligence up and down the manufacturing process hierarchy. Decisions are made with the knowledge of the current and projected health state of the system at decision points along the nodes of the hierarchical structure. A description of the AM-PHM methodology with a simulated canonical robotic assembly process is presented.</p>","PeriodicalId":91951,"journal":{"name":"Proceedings of the Annual Conference of the Prognostics and Health Management Society. Prognostics and Health Management Society. Conference","volume":"6 ","pages":"037"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35131340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信