Privacy in statistical databases. PSD (Conference : 2004- )最新文献

筛选
英文 中文
Generalized Bayesian Record Linkage and Regression with Exact Error Propagation 精确误差传播的广义贝叶斯记录链接与回归
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2018-09-26 DOI: 10.1007/978-3-319-99771-1_20
R. Steorts, A. Tancredi, B. Liseo
{"title":"Generalized Bayesian Record Linkage and Regression with Exact Error Propagation","authors":"R. Steorts, A. Tancredi, B. Liseo","doi":"10.1007/978-3-319-99771-1_20","DOIUrl":"https://doi.org/10.1007/978-3-319-99771-1_20","url":null,"abstract":"","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"9 1","pages":"297-313"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84354490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Reviewing the Methods of Estimating the Density Function Based on Masked Data 基于掩模数据的密度函数估计方法综述
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2018-09-26 DOI: 10.1007/978-3-319-99771-1_16
Yan-Xia Lin, P. Krivitsky
{"title":"Reviewing the Methods of Estimating the Density Function Based on Masked Data","authors":"Yan-Xia Lin, P. Krivitsky","doi":"10.1007/978-3-319-99771-1_16","DOIUrl":"https://doi.org/10.1007/978-3-319-99771-1_16","url":null,"abstract":"","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"CE-24 4","pages":"231-246"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72608314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficiency and Sample Size Determination of Protected Data 受保护数据的效率和样本量确定
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2018-09-26 DOI: 10.1007/978-3-319-99771-1_18
Bradley Wakefield, Yan-Xia Lin
{"title":"Efficiency and Sample Size Determination of Protected Data","authors":"Bradley Wakefield, Yan-Xia Lin","doi":"10.1007/978-3-319-99771-1_18","DOIUrl":"https://doi.org/10.1007/978-3-319-99771-1_18","url":null,"abstract":"","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"9 1","pages":"263-278"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82013463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multiparty Computation with Statistical Input Confidentiality via Randomized Response 基于随机响应的统计输入保密性多方计算
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2018-09-26 DOI: 10.1007/978-3-319-99771-1_12
J. Domingo-Ferrer, Rafael Mulero-Vellido, Jordi Soria-Comas
{"title":"Multiparty Computation with Statistical Input Confidentiality via Randomized Response","authors":"J. Domingo-Ferrer, Rafael Mulero-Vellido, Jordi Soria-Comas","doi":"10.1007/978-3-319-99771-1_12","DOIUrl":"https://doi.org/10.1007/978-3-319-99771-1_12","url":null,"abstract":"","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"27 1","pages":"175-186"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80633912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Protecting Census 2021 Origin-Destination Data Using a Combination of Cell-Key Perturbation and Suppression 使用细胞键扰动和抑制相结合的方法保护2021年人口普查原点-目的地数据
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2018-09-26 DOI: 10.1007/978-3-319-99771-1_4
Iain Dove, Christos Ntoumos, K. Spicer
{"title":"Protecting Census 2021 Origin-Destination Data Using a Combination of Cell-Key Perturbation and Suppression","authors":"Iain Dove, Christos Ntoumos, K. Spicer","doi":"10.1007/978-3-319-99771-1_4","DOIUrl":"https://doi.org/10.1007/978-3-319-99771-1_4","url":null,"abstract":"","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"202 1","pages":"43-55"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77633080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Protecting Values Close to Zero Under the Multiplicative Noise Method 乘性噪声法下的近零保护
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2018-09-26 DOI: 10.1007/978-3-319-99771-1_17
Yan-Xia Lin
{"title":"Protecting Values Close to Zero Under the Multiplicative Noise Method","authors":"Yan-Xia Lin","doi":"10.1007/978-3-319-99771-1_17","DOIUrl":"https://doi.org/10.1007/978-3-319-99771-1_17","url":null,"abstract":"","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"197 1","pages":"247-262"},"PeriodicalIF":0.0,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74211359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
pMSE Mechanism: Differentially Private Synthetic Data with Maximal Distributional Similarity pMSE机制:具有最大分布相似性的差分私有合成数据
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2018-05-23 DOI: 10.1007/978-3-319-99771-1_10
Joshua Snoke, A. Slavkovic
{"title":"pMSE Mechanism: Differentially Private Synthetic Data with Maximal Distributional Similarity","authors":"Joshua Snoke, A. Slavkovic","doi":"10.1007/978-3-319-99771-1_10","DOIUrl":"https://doi.org/10.1007/978-3-319-99771-1_10","url":null,"abstract":"","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"22 1","pages":"138-159"},"PeriodicalIF":0.0,"publicationDate":"2018-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87044229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Grouping of variables to facilitate statistical disclosure limitation methods in multivariate data sets. 对变量进行分组以方便统计披露,限制了多变量数据集的方法。
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2018-01-01 DOI: 10.1007/978-3-319-99771-1_13
Anna Oganian, Ionut Iacob, Goran Lesaja
{"title":"Grouping of variables to facilitate statistical disclosure limitation methods in multivariate data sets.","authors":"Anna Oganian, Ionut Iacob, Goran Lesaja","doi":"10.1007/978-3-319-99771-1_13","DOIUrl":"10.1007/978-3-319-99771-1_13","url":null,"abstract":"<p><p>Data sets that are subject to Statistical Disclosure Limitation (SDL) often have many variables of different types that need to be altered for disclosure limitation. To produce a good quality public data set, the data protector needs to account for the relationships between the variables. Hence, ideally SDL methods should not be univariate, that is, treating each variable independently of others, but multivariate, handling many variables at the same time. However, if a data set has many variables, as most government survey data do, the task of developing and implementing a multivariate approach for SDL becomes difficult. In this paper we propose a pre-masking data processing procedure which consists of clustering the variables of high dimensional data sets, so that different groups of variables can be masked independently, thus reducing the complexity of SDL. We consider different hierarchical clustering methods, including our version of hierarchical clustering algorithm, that we call <i>K-Link</i>, and outline how the data protector can define an appropriate number of clusters for these methods. We implemented and applied these methods to two genuine multivariate data sets. The results of the experiments show that <i>K-Link</i> has a potential to solve this problem efficiently. The success of the method, however, depends on the correlation structure of the data. For the data sets where most of the variables are correlated, clustering of variables and subsequent independent application of SDL methods to different clusters may lead to attenuated correlation in the masked data, even for efficient clustering methods. Thereby, the proposed approach is a trade-off between the computational complexity of multivariate SDL methods and data utility loss due to independent treatment of different clusters by SDL methods. <b>Keywords and phrases:</b> Statistical disclosure limitation (SDL), hierarchical clustering, dimensionality reduction.</p>","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"? ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182379/pdf/nihms-1016601.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37874748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting Interval Protection, a.k.a. Partial Cell Suppression, for Tabular Data 重新访问表格数据的间隔保护,即部分单元格抑制
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2016-09-14 DOI: 10.1007/978-3-319-45381-1_1
J. Castro, Anna Via
{"title":"Revisiting Interval Protection, a.k.a. Partial Cell Suppression, for Tabular Data","authors":"J. Castro, Anna Via","doi":"10.1007/978-3-319-45381-1_1","DOIUrl":"https://doi.org/10.1007/978-3-319-45381-1_1","url":null,"abstract":"","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"8 1","pages":"3-14"},"PeriodicalIF":0.0,"publicationDate":"2016-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75218632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Rule-Based Approach to Local Anonymization for Exclusivity Handling in Statistical Databases 基于规则的统计数据库独占性处理局部匿名化方法
Privacy in statistical databases. PSD (Conference : 2004- ) Pub Date : 2016-09-14 DOI: 10.1007/978-3-319-45381-1_7
J. Albrecht, M. Fiedler, Tim Kiefer
{"title":"A Rule-Based Approach to Local Anonymization for Exclusivity Handling in Statistical Databases","authors":"J. Albrecht, M. Fiedler, Tim Kiefer","doi":"10.1007/978-3-319-45381-1_7","DOIUrl":"https://doi.org/10.1007/978-3-319-45381-1_7","url":null,"abstract":"","PeriodicalId":91946,"journal":{"name":"Privacy in statistical databases. PSD (Conference : 2004- )","volume":"45 1","pages":"81-93"},"PeriodicalIF":0.0,"publicationDate":"2016-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85774860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信