A. Snyder, P. Lane, Mei Zhou, Susan T. Paulukonis, M. Hulihan
{"title":"The accuracy of hospital ICD-9-CM codes for determining Sickle Cell Disease genotype","authors":"A. Snyder, P. Lane, Mei Zhou, Susan T. Paulukonis, M. Hulihan","doi":"10.29245/2572-9411/2017/4.1124","DOIUrl":"https://doi.org/10.29245/2572-9411/2017/4.1124","url":null,"abstract":"Sickle cell disease affects more than 100,000 individuals in the United States, among whom disease severity varies considerably. One factor that influences disease severity is the sickle cell disease genotype. For this reason, clinical prevention and treatment guidelines tend to differentiate between genotypes. However, previous research suggests caution when using a claimsbased determination of sickle cell disease genotype in healthcare quality studies. The objective of this study was to describe the extent of miscoding for the major sickle cell disease genotypes in hospital discharge data. Individuals with sickle cell disease were identified through newborn screening results or hemoglobinopathy specialty care centers, along with their sickle cell disease genotypes. These genotypes were compared to the diagnosis codes listed in hospital discharge data to assess the accuracy of the hospital codes in determining sickle cell disease genotype. Eighty-three percent (sickle cell anemia), 23% (Hemoglobin SC), and 31% (Hemoglobin Sβ+ thalassemia) of hospitalizations contained a diagnosis code that correctly reflected the individual's true sickle cell disease genotype. The accuracy of the sickle cell disease genotype coding was indeterminate in 11% (sickle cell anemia), 12% (Hemoglobin SC), and 7% (Hemoglobin Sβ+ thalassemia) and incorrect in 3% (sickle cell anemia), 61% (Hemoglobin SC), and 52% (Hemoglobin Sβ+ thalassemia) of the hospitalizations. The use of ICD-9-CM codes from hospital discharge data for determining specific sickle cell disease genotypes is problematic. Research based solely on these or other types of administrative data could lead to incorrect understanding of the disease.","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"75 1","pages":"39 - 45"},"PeriodicalIF":0.0,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81634876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philippa C. Fowler, Dwayne J. Byrne, N. C. O'sullivan
{"title":"Rare disease models provide insight into inherited forms of neurodegeneration","authors":"Philippa C. Fowler, Dwayne J. Byrne, N. C. O'sullivan","doi":"10.29245/2572-9411/2016/3.1051","DOIUrl":"https://doi.org/10.29245/2572-9411/2016/3.1051","url":null,"abstract":"Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative conditions characterised by retrograde degeneration of the longest motor neurons in the corticospinal tract, resulting in muscle weakness and spasticity of the lower limbs. To date more than 70 genetic loci have been associated with HSP, however the majority of cases are caused by mutations that encode proteins responsible for generating and maintaining tubular endoplasmic reticulum (ER) structure. These ER-shaping proteins are vital for the long-term survival of axons, however the mechanisms by which mutations in these proteins give rise to HSP remain poorly understood. To begin to address this we have characterized in vivo loss of function models of two very rare forms of HSP caused by loss of the ER-shaping proteins ARL6IP1 (SPG61) and RTN2 (SPG12). These models display progressive locomotor defects, disrupted organisation of the tubular ER and length-dependant defects in the axonal mitochondrial network. Here we compare our findings with those associated with more common forms HSP including: Spastin, Atlastin-1 and REEP 1 which together account for over half of all cases of autosomal dominant HSP. Furthermore, we discuss recent observations in other HSP models which are directly implicated in mitochondrial function and localization. Overall, we highlight the common features of our rare models of HSP and other models of disease which could indicate shared mechanisms underpinning neurodegeneration in these disorders.","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"24 1","pages":"17 - 21"},"PeriodicalIF":0.0,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81146579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SCID pigs: An emerging large animal NK model.","authors":"E. J. Powell, J. Cunnick, C. Tuggle","doi":"10.29245/2572-9411/2017/3.1103","DOIUrl":"https://doi.org/10.29245/2572-9411/2017/3.1103","url":null,"abstract":"Severe Combined ImmunoDeficiency (SCID) is defined as the lack or impairment of an adaptive immune system. Although SCID phenotypes are characteristically absent of T and B cells, many such SCID cellular profiles include the presence of NK cells. In human SCID patients, functional NK cells may impact the engraftment success of life saving procedures such as bone marrow transplantation. However, in animal models, a T cell-, B cell-, NK cell+ environment provides a valuable tool for asking specific questions about the extent of the innate immune system function as well as emerging NK targeted therapies against cancer. Physiologically and immunologically the pig is more similar to the human than common rodent research animals. This review discusses why the T- B- NK+ SCID pig may offer a more relevant model for development of human SCID patient therapies as well as provide an opportunity for systematic exploration of the role of NK cells in artiodactyl immunity.","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84671114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ataxia-Telangiectasia Mutated Kinase: Role in Myocardial Remodeling.","authors":"Patsy Thrasher, Mahipal Singh, Krishna Singh","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Ataxia-telangiectasia mutated kinase (ATM) is a serine/threonine kinase. Mutations in the ATM gene cause a rare autosomal multisystemic disease known as Ataxia-telangiectasia (AT). Individuals with mutations in both copies of the ATM gene suffer from increased susceptibility to ionizing radiation, predisposition to cancer, insulin resistance, immune deficiency, and premature aging. Patients with one mutated allele make-up ~1.4 to 2% of the general population. These individuals are spared from most of the symptoms of the disease. However, they are predisposed to developing cancer or ischemic heart disease, and die 7-8 years earlier than the non-carriers. DNA double-strand breaks activate ATM, and active ATM is known to phosphorylate an extensive array of proteins involved in cell cycle arrest, DNA repair, and apoptosis. The importance of ATM in the regulation of DNA damage response signaling is fairly well-established. This review summarizes the role of ATM in the heart, specifically in cardiac remodeling following β-adrenergic receptor stimulation and myocardial infarction.</p>","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"2 1","pages":"32-37"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35619388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ellis J Powell, Joan E Cunnick, Christopher K Tuggle
{"title":"SCID pigs: An emerging large animal NK model.","authors":"Ellis J Powell, Joan E Cunnick, Christopher K Tuggle","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Severe Combined ImmunoDeficiency (SCID) is defined as the lack or impairment of an adaptive immune system. Although SCID phenotypes are characteristically absent of T and B cells, many such SCID cellular profiles include the presence of NK cells. In human SCID patients, functional NK cells may impact the engraftment success of life saving procedures such as bone marrow transplantation. However, in animal models, a T cell-, B cell-, NK cell+ environment provides a valuable tool for asking specific questions about the extent of the innate immune system function as well as emerging NK targeted therapies against cancer. Physiologically and immunologically the pig is more similar to the human than common rodent research animals. This review discusses why the T- B- NK+ SCID pig may offer a more relevant model for development of human SCID patient therapies as well as provide an opportunity for systematic exploration of the role of NK cells in artiodactyl immunity.</p>","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"2 3","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690567/pdf/nihms893768.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35565379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caitlin Doherty, Francyne Kubaski, Shunji Tomatsu, Thomas H Shaffer
{"title":"Non-invasive pulmonary function test on Morquio patients.","authors":"Caitlin Doherty, Francyne Kubaski, Shunji Tomatsu, Thomas H Shaffer","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Morquio patients, in many cases, present with severe tracheal narrowing and restrictive lung problems making them susceptible to high mortality arising from sleep apnea and related complications. Tracheal obstruction with growth imbalance, short neck, adeno and tonsillar hypertrophy, large mandible, and/or pectus carinatum also contributes to the challenges in managing the airway with intubation and extubation due to factors intrinsic to Morquio syndrome. Taken together, these issues lead to serious respiratory distress and life-threatening complications during anesthetic procedures. Furthermore, patients with Morquio syndrome frequently cannot perform standard pulmonary function tests as a result of their distinctive skeletal dysplasia and chest deformity, thus making diagnosis of incipient pulmonary disease difficult. In many cases, conventional spirometry is too difficult for patients to complete, deriving from issues with cooperation or clinical circumstance. Therefore, it is an unmet challenge to assess pulmonary insufficiency with standard pulmonary function test (PFT) with minimal effort. Non-invasive PFT such as respiratory inductance plethysmography, impulse oscillometry system, and pneumotachography were described in Morquio patients as compared with spirometry. Findings from our previous study indicate that these non-invasive tests are a reliable approach to evaluate lung function in a larger range of patients, and provide valuable clinical information otherwise unobtainable from invasive tests. In conclusion, the present study describes the utility of non-invasive (PFT) to accommodate a broad range of patients including intolerance to effort-dependent PFT.</p>","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"2 2","pages":"55-62"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171363/pdf/nihms955547.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41159989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Waardenburg Syndrome Expression and Penetrance.","authors":"Myeshia V Shelby","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Through a combination of in silico research and reviews of previous work, mechanisms by which nonsense-mediated mRNA decay (NMD) affects the inheritance and expressivity of Waardenburg syndrome is realized. While expressivity and inheritance both relate to biochemical processes underlying a gene's function, this research explores how alternative splicing and premature termination codons (PTC's) within mRNAs mutated in the disease are either translated into deleterious proteins or decayed to minimize expression of altered proteins. Elucidation of splice variants coupled with NMD perpetuating the various symptoms and inheritance patterns of this disease represent novel findings. By investigating nonsense mutations that lie within and outside the NMD boundary of these transcripts we can evaluate the effects of protein truncation versus minimized protein expression on the variable expressivity found between Type I and Type III Waardenburg syndrome, <i>PAX3,</i> while comparatively evaluating <i>EDN3</i> and <i>SOX10's</i> role in inheritance of Type IV subtypes of the disease. This review will demonstrate how alternative splicing perpetuates or limits NMD activity by way of PTC positioning, thereby affecting the presentation of Waardenburg syndrome.</p>","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"2 6","pages":"31-40"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37041144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angela B Snyder, Peter A Lane, Mei Zhou, Susan T Paulukonis, Mary M Hulihan
{"title":"The accuracy of hospital ICD-9-CM codes for determining Sickle Cell Disease genotype.","authors":"Angela B Snyder, Peter A Lane, Mei Zhou, Susan T Paulukonis, Mary M Hulihan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Sickle cell disease affects more than 100,000 individuals in the United States, among whom disease severity varies considerably. One factor that influences disease severity is the sickle cell disease genotype. For this reason, clinical prevention and treatment guidelines tend to differentiate between genotypes. However, previous research suggests caution when using a claimsbased determination of sickle cell disease genotype in healthcare quality studies. The objective of this study was to describe the extent of miscoding for the major sickle cell disease genotypes in hospital discharge data. Individuals with sickle cell disease were identified through newborn screening results or hemoglobinopathy specialty care centers, along with their sickle cell disease genotypes. These genotypes were compared to the diagnosis codes listed in hospital discharge data to assess the accuracy of the hospital codes in determining sickle cell disease genotype. Eighty-three percent (sickle cell anemia), 23% (Hemoglobin SC), and 31% (Hemoglobin Sβ<sup>+</sup> thalassemia) of hospitalizations contained a diagnosis code that correctly reflected the individual's true sickle cell disease genotype. The accuracy of the sickle cell disease genotype coding was indeterminate in 11% (sickle cell anemia), 12% (Hemoglobin SC), and 7% (Hemoglobin Sβ<sup>+</sup> thalassemia) and incorrect in 3% (sickle cell anemia), 61% (Hemoglobin SC), and 52% (Hemoglobin Sβ<sup>+</sup> thalassemia) of the hospitalizations. The use of ICD-9-CM codes from hospital discharge data for determining specific sickle cell disease genotypes is problematic. Research based solely on these or other types of administrative data could lead to incorrect understanding of the disease.</p>","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"2 4","pages":"39-45"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35217411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Doherty, Francyne Kubaski, S. Tomatsu, T. Shaffer
{"title":"Non-invasive pulmonary function test on Morquio patients.","authors":"C. Doherty, Francyne Kubaski, S. Tomatsu, T. Shaffer","doi":"10.29245/2572-9411/2017/2.1097","DOIUrl":"https://doi.org/10.29245/2572-9411/2017/2.1097","url":null,"abstract":"Morquio patients, in many cases, present with severe tracheal narrowing and restrictive lung problems making them susceptible to high mortality arising from sleep apnea and related complications. Tracheal obstruction with growth imbalance, short neck, adeno and tonsillar hypertrophy, large mandible, and/or pectus carinatum also contributes to the challenges in managing the airway with intubation and extubation due to factors intrinsic to Morquio syndrome. Taken together, these issues lead to serious respiratory distress and life-threatening complications during anesthetic procedures. Furthermore, patients with Morquio syndrome frequently cannot perform standard pulmonary function tests as a result of their distinctive skeletal dysplasia and chest deformity, thus making diagnosis of incipient pulmonary disease difficult. In many cases, conventional spirometry is too difficult for patients to complete, deriving from issues with cooperation or clinical circumstance. Therefore, it is an unmet challenge to assess pulmonary insufficiency with standard pulmonary function test (PFT) with minimal effort. Non-invasive PFT such as respiratory inductance plethysmography, impulse oscillometry system, and pneumotachography were described in Morquio patients as compared with spirometry. Findings from our previous study indicate that these non-invasive tests are a reliable approach to evaluate lung function in a larger range of patients, and provide valuable clinical information otherwise unobtainable from invasive tests. In conclusion, the present study describes the utility of non-invasive (PFT) to accommodate a broad range of patients including intolerance to effort-dependent PFT.","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"21 1","pages":"55-62"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73371879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vaishnavi Raja, Christian A Reynolds, Miriam L Greenberg
{"title":"Barth syndrome: A life-threatening disorder caused by abnormal cardiolipin remodeling.","authors":"Vaishnavi Raja, Christian A Reynolds, Miriam L Greenberg","doi":"10.29245/2572-9411/2017/2.1087","DOIUrl":"https://doi.org/10.29245/2572-9411/2017/2.1087","url":null,"abstract":"<p><p>Barth syndrome (BTHS) is a rare X-linked genetic disorder characterized by cardiomyopathy, skeletal myopathy, neutropenia, and organic aciduria. The presence and severity of clinical manifestations are highly variable in BTHS, even among patients with identical gene mutations. Currently, less than 200 patients are diagnosed worldwide, but it is estimated that the disorder may be substantially under-diagnosed due to the variable spectrum of clinical manifestations. BTHS is caused by mutations in the gene tafazzin (<i>TAZ</i>), resulting in defective remodeling of cardiolipin (CL), the signature phospholipid of the mitochondrial membranes. Many of the clinical sequela associated with BTHS can be directly attributed to mitochondria defects. In 2008, a definitive biochemical test was described based on detection of the abnormal CL profile characteristic of BTHS. This mini-review provides an overview of the etiology of BTHS, as well as a description of common clinical phenotypes associated with the disorder.</p>","PeriodicalId":91764,"journal":{"name":"Journal of rare diseases research & treatment","volume":"2 2","pages":"58-62"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.29245/2572-9411/2017/2.1087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37194338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}