BMC Medical Research Methodology最新文献

筛选
英文 中文
Operationalising routinely collected patient data in research to further the pursuit of social justice and health equity: a team-based scoping review. 将常规收集的患者数据用于研究,以进一步追求社会公正和卫生公平:以团队为基础的范围审查。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-21 DOI: 10.1186/s12874-025-02466-9
Katie Chadd, Anna Caute, Anna Pettican, Pam Enderby
{"title":"Operationalising routinely collected patient data in research to further the pursuit of social justice and health equity: a team-based scoping review.","authors":"Katie Chadd, Anna Caute, Anna Pettican, Pam Enderby","doi":"10.1186/s12874-025-02466-9","DOIUrl":"10.1186/s12874-025-02466-9","url":null,"abstract":"<p><strong>Background: </strong>Vast volumes of routinely collected data (RCD) about patients are collated by health professionals. Leveraging this data - a form of real-world data - can be valuable for quality improvement and contributing to the evidence-base to inform practice. Examining routine data may be especially useful for examining issues related to social justice such as health inequities. However, little is known about the extent to which RCD is utilised in health fields and published for wider dissemination.</p><p><strong>Objectives: </strong>The objective of this scoping review is to document the peer-reviewed published research in allied health fields which utilise RCD and evaluate the extent to which these studies have addressed issues pertaining to social justice.</p><p><strong>Methods: </strong>An enhanced version of the Arksey and O'Malley's framework, put forth by Westphalm et al. guided the scoping review. A comprehensive literature search of three databases identified 1584 articles. Application of inclusion and exclusion criteria was piloted on 5% of the papers by three researchers. All titles and abstracts were screened independently by 2 team members, as were full texts. A data charting framework, developed to address the research questions, was piloted by three researchers with data extraction being completed by the lead researcher. A sample of papers were independently charted by a second researcher for reliability checking.</p><p><strong>Results: </strong>One hundred and ninety papers were included in the review. The literature was diverse in terms of the professions that were represented: physiotherapy (33.7%) and psychology/mental health professions (15.8%) predominated. Many studies were first authored by clinicians (44.2%), often with clinical-academic teams. Some (33.25%) directly referenced the use of their studies to examine translation of research to practice. Few studies (14.2%) specifically tackled issues pertaining to social justice, though many collected variables that could have been utilised for this purpose.</p><p><strong>Conclusion: </strong>Studies operationalising RCD can meaningfully address research to practice gaps and provide new evidence about issues related to social justice. However, RCD is underutilised for these purposes. Given that vast volumes of relevant data are routinely collected, more needs to be done to leverage it, which would be supported by greater acknowledgement of the value of RCD studies.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"14"},"PeriodicalIF":3.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why and how should we simulate platform trials? Learnings from EU-PEARL. 为什么以及如何模拟平台试验?向EU-PEARL学习。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-17 DOI: 10.1186/s12874-024-02453-6
Elias Laurin Meyer, Tobias Mielke, Marta Bofill Roig, Michaela Maria Freitag, Peter Jacko, Pavla Krotka, Peter Mesenbrink, Tom Parke, Sonja Zehetmayer, Dario Zocholl, Franz König
{"title":"Why and how should we simulate platform trials? Learnings from EU-PEARL.","authors":"Elias Laurin Meyer, Tobias Mielke, Marta Bofill Roig, Michaela Maria Freitag, Peter Jacko, Pavla Krotka, Peter Mesenbrink, Tom Parke, Sonja Zehetmayer, Dario Zocholl, Franz König","doi":"10.1186/s12874-024-02453-6","DOIUrl":"10.1186/s12874-024-02453-6","url":null,"abstract":"<p><strong>Background: </strong>Platform trials are innovative clinical trials governed by a master protocol that allows for the evaluation of multiple investigational treatments that enter and leave the trial over time. Interest in platform trials has been steadily increasing over the last decade. Due to their highly adaptive nature, platform trials provide sufficient flexibility to customize important trial design aspects to the requirements of both the specific disease under investigation and the different stakeholders. The flexibility of platform trials, however, comes with complexities when designing such trials. In the past, we reviewed existing software for simulating clinical trials and found that none of them were suitable for simulating platform trials as they do not accommodate the design features and flexibility inherent to platform trials, such as staggered entry of treatments over time.</p><p><strong>Results: </strong>We argued that simulation studies are crucial for the design of efficient platform trials. We developed and proposed an iterative, simulation-guided \"vanilla and sprinkles\" framework, i.e. from a basic to a more complex design, for designing platform trials. We addressed the functionality limitations of existing software as well as the unavailability of the coding therein by developing a suite of open-source software to use in simulating platform trials based on the R programming language. To give some examples, the newly developed software supports simulating staggered entry of treatments throughout the trial, choosing different options for control data sharing, specifying different platform stopping rules and platform-level operating characteristics. The software we developed is available through open-source licensing to enable users to access and modify the code. The separate use of two of these software packages to implement the same platform design by independent teams obtained the same results.</p><p><strong>Conclusion: </strong>We provide a framework, as well as open-source software for the design and simulation of platform trials. The software tools provide the flexibility necessary to capture the complexity of platform trials.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"12"},"PeriodicalIF":3.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A case study in statistical software development for advanced evidence synthesis: the combined value of analysts and research software engineers. 高级证据合成的统计软件开发案例研究:分析人员和研究软件工程师的综合价值。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-17 DOI: 10.1186/s12874-024-02450-9
Naomi Bradbury, Tom Morris, Clareece Nevill, Janion Nevill, Ryan Field, Suzanne Freeman, Nicola Cooper, Alex Sutton
{"title":"A case study in statistical software development for advanced evidence synthesis: the combined value of analysts and research software engineers.","authors":"Naomi Bradbury, Tom Morris, Clareece Nevill, Janion Nevill, Ryan Field, Suzanne Freeman, Nicola Cooper, Alex Sutton","doi":"10.1186/s12874-024-02450-9","DOIUrl":"10.1186/s12874-024-02450-9","url":null,"abstract":"<p><strong>Background: </strong>Since 2015, the Complex Reviews Synthesis Unit (CRSU) has developed a suite of web-based applications (apps) that conduct complex evidence synthesis meta-analyses through point-and-click interfaces. This has been achieved in the R programming language by combining existing R packages that conduct meta-analysis with the shiny web-application package. The CRSU apps have evolved from two short-term student projects into a suite of eight apps that are used for more than 3,000 h per month.</p><p><strong>Aim: </strong>Here, we present our experience of developing production grade web-apps from the point-of-view of individuals trained primarily as statisticians rather than software developers in the hopes of encouraging and inspiring other groups to develop valuable open-source statistical software whilst also learning from our experiences.</p><p><strong>Key challenges: </strong>We discuss how we have addressed challenges to research software development such as responding to feedback from our real-world users to improve the CRSU apps, the implementation of software engineering principles into our app development process and gaining recognition for non-traditional research work within the academic environment.</p><p><strong>Future developments: </strong>The CRSU continues to seek funding opportunities both to maintain and further develop our shiny apps. We aim to increase our user base by implementing new features within the apps and building links with other groups developing complementary evidence synthesis tools.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"13"},"PeriodicalIF":3.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development, validation, and usage of metrics to evaluate the quality of clinical research hypotheses. 开发、验证和使用指标来评估临床研究假设的质量。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-16 DOI: 10.1186/s12874-025-02460-1
Xia Jing, Yuchun Zhou, James J Cimino, Jay H Shubrook, Vimla L Patel, Sonsoles De Lacalle, Aneesa Weaver, Chang Liu
{"title":"Development, validation, and usage of metrics to evaluate the quality of clinical research hypotheses.","authors":"Xia Jing, Yuchun Zhou, James J Cimino, Jay H Shubrook, Vimla L Patel, Sonsoles De Lacalle, Aneesa Weaver, Chang Liu","doi":"10.1186/s12874-025-02460-1","DOIUrl":"10.1186/s12874-025-02460-1","url":null,"abstract":"<p><strong>Objectives: </strong>Metrics and instruments can provide guidance for clinical researchers to assess their potential research projects at an early stage before significant investment. Furthermore, metrics can also provide structured criteria for peer reviewers to assess others' clinical research manuscripts or grant proposals. This study aimed to develop, test, validate, and use evaluation metrics and instruments to accurately, consistently, systematically, and conveniently assess the quality of scientific hypotheses for clinical research projects.</p><p><strong>Materials and methods: </strong>Metrics development went through iterative stages, including literature review, metrics and instrument development, internal and external testing and validation, and continuous revisions in each stage based on feedback. Furthermore, two experiments were conducted to determine brief and comprehensive versions of the instrument.</p><p><strong>Results: </strong>The brief version of the instrument contained three dimensions: validity, significance, and feasibility. The comprehensive version of metrics included novelty, clinical relevance, potential benefits and risks, ethicality, testability, clarity, interestingness, and the three dimensions of the brief version. Each evaluation dimension included 2 to 5 subitems to evaluate the specific aspects of each dimension. For example, validity included clinical validity and scientific validity. The brief and comprehensive versions of the instruments included 12 and 39 subitems, respectively. Each subitem used a 5-point Likert scale.</p><p><strong>Conclusion: </strong>The validated brief and comprehensive versions of metrics can provide standardized, consistent, systematic, and generic measurements for clinical research hypotheses, allow clinical researchers to prioritize their research ideas systematically, objectively, and consistently, and can be used as a tool for quality assessment during the peer review process.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"11"},"PeriodicalIF":3.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient evidence selection for systematic reviews in traditional Chinese medicine. 中医系统评价的有效证据选择。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-15 DOI: 10.1186/s12874-024-02430-z
Yizhen Li, Zhe Huang, Zhongzhi Luan, Shujing Xu, Yunan Zhang, Lin Wu, Darong Wu, Dongran Han, Yixing Liu
{"title":"Efficient evidence selection for systematic reviews in traditional Chinese medicine.","authors":"Yizhen Li, Zhe Huang, Zhongzhi Luan, Shujing Xu, Yunan Zhang, Lin Wu, Darong Wu, Dongran Han, Yixing Liu","doi":"10.1186/s12874-024-02430-z","DOIUrl":"10.1186/s12874-024-02430-z","url":null,"abstract":"<p><strong>Purpose: </strong>The process of searching for and selecting clinical evidence for systematic reviews (SRs) or clinical guidelines is essential for researchers in Traditional Chinese medicine (TCM). However, this process is often time-consuming and resource-intensive. In this study, we introduce a novel precision-preferred comprehensive information extraction and selection procedure to enhance both the efficiency and accuracy of evidence selection for TCM practitioners.</p><p><strong>Methods: </strong>We integrated an established deep learning model (Evi-BERT combined rule-based method) with Boolean logic algorithms and an expanded retrieval strategy to automatically and accurately select potential evidence with minimal human intervention. The selection process is recorded in real-time, allowing researchers to backtrack and verify its accuracy. This innovative approach was tested on ten high-quality, randomly selected systematic reviews of TCM-related topics written in Chinese. To evaluate its effectiveness, we compared the screening time and accuracy of this approach with traditional evidence selection methods.</p><p><strong>Results: </strong>Our finding demonstrated that the new method accurately selected potential literature based on consistent criteria while significantly reducing the time required for the process. Additionally, in some cases, this approach identified a broader range of relevant evidence and enabled the tracking of selection progress for future reference. The study also revealed that traditional screening methods are often subjective and prone to errors, frequently resulting in the inclusion of literature that does not meet established standards. In contrast, our method offers a more accurate and efficient way to select clinical evidence for TCM practitioners, outperforming traditional manual approaches.</p><p><strong>Conclusion: </strong>We proposed an innovative approach for selecting clinical evidence for TCM reviews and guidelines, aiming to reduce the workload for researchers. While this method showed promise in improving the efficiency and accuracy of evidence-based selection, its full potential required further validation. Additionally, it may serve as a useful tool for editors to assess manuscript quality in the future.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"10"},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methodological challenges using routine clinical care data for real-world evidence: a rapid review utilizing a systematic literature search and focus group discussion. 使用常规临床护理数据获取真实世界证据的方法学挑战:利用系统文献检索和焦点小组讨论的快速回顾。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-14 DOI: 10.1186/s12874-024-02440-x
Michelle Pfaffenlehner, Max Behrens, Daniela Zöller, Kathrin Ungethüm, Kai Günther, Viktoria Rücker, Jens-Peter Reese, Peter Heuschmann, Miriam Kesselmeier, Flavia Remo, André Scherag, Harald Binder, Nadine Binder
{"title":"Methodological challenges using routine clinical care data for real-world evidence: a rapid review utilizing a systematic literature search and focus group discussion.","authors":"Michelle Pfaffenlehner, Max Behrens, Daniela Zöller, Kathrin Ungethüm, Kai Günther, Viktoria Rücker, Jens-Peter Reese, Peter Heuschmann, Miriam Kesselmeier, Flavia Remo, André Scherag, Harald Binder, Nadine Binder","doi":"10.1186/s12874-024-02440-x","DOIUrl":"10.1186/s12874-024-02440-x","url":null,"abstract":"<p><strong>Background: </strong>The integration of real-world evidence (RWE) from real-world data (RWD) in clinical research is crucial for bridging the gap between clinical trial results and real-world outcomes. Analyzing routinely collected data to generate clinical evidence faces methodological concerns like confounding and bias, similar to prospectively documented observational studies. This study focuses on additional limitations frequently reported in the literature, providing an overview of the challenges and biases inherent to analyzing routine clinical care data, including health claims data (hereafter: routine data).</p><p><strong>Methods: </strong>We conducted a literature search on routine data studies in four high-impact journals based on the Journal Citation Reports (JCR) category \"Medicine, General & Internal\" as of 2022 and three oncology journals, covering articles published from January 2018 to October 2023. Articles were screened and categorized into three scenarios based on their potential to provide meaningful RWE: (1) Burden of Disease, (2) Safety and Risk Group Analysis, and (3) Treatment Comparison. Limitations of this type of data cited in the discussion sections were extracted and classified according to different bias types: main bias categories in non-randomized studies (information bias, reporting bias, selection bias, confounding) and additional routine data-specific challenges (i.e., operationalization, coding, follow-up, missing data, validation, and data quality). These classifications were then ranked by relevance in a focus group meeting of methodological experts. The search was pre-specified and registered in PROSPERO (CRD42023477616).</p><p><strong>Results: </strong>In October 2023, 227 articles were identified, 69 were assessed for eligibility, and 39 were included in the review: 11 on the burden of disease, 17 on safety and risk group analysis, and 11 on treatment comparison. Besides typical biases in observational studies, we identified additional challenges specific to RWE frequently mentioned in the discussion sections. The focus group had varied opinions on the limitations of Safety and Risk Group Analysis and Treatment Comparison but agreed on the essential limitations for the Burden of Disease category.</p><p><strong>Conclusion: </strong>This review provides a comprehensive overview of potential limitations and biases in analyzing routine data reported in recent high-impact journals. We highlighted key challenges that have high potential to impact analysis results, emphasizing the need for thorough consideration and discussion for meaningful inferences.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"8"},"PeriodicalIF":3.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recruiting participants for focus groups in health research: a meta-research study. 招募健康研究焦点小组的参与者:一项元研究研究。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-14 DOI: 10.1186/s12874-025-02464-x
Jonas Lander, Simon Wallraf, Dawid Pieper, Ronny Klawunn, Hala Altawil, Marie-Luise Dierks, Cosima John
{"title":"Recruiting participants for focus groups in health research: a meta-research study.","authors":"Jonas Lander, Simon Wallraf, Dawid Pieper, Ronny Klawunn, Hala Altawil, Marie-Luise Dierks, Cosima John","doi":"10.1186/s12874-025-02464-x","DOIUrl":"10.1186/s12874-025-02464-x","url":null,"abstract":"<p><strong>Background: </strong>Focus groups (FGs) are an established method in health research to capture a full range of different perspectives on a particular research question. The extent to which they are effective depends, not least, on the composition of the participants. This study aimed to investigate how published FG studies plan and conduct the recruitment of study participants. We looked at what kind of information is reported about recruitment practices and what this reveals about the comprehensiveness of the actual recruitment plans and practices.</p><p><strong>Methods: </strong>We conducted a systematic search of FG studies in PubMed and Web of Science published between 2018 and 2024, and included n = 80 eligible publications in the analysis. We used a text extraction sheet to collect all relevant recruitment information from each study. We then coded the extracted text passages and summarised the findings descriptively.</p><p><strong>Results: </strong>Nearly half (n = 38/80) of the studies were from the USA and Canada, many addressing issues related to diabetes, cancer, mental health and chronic diseases. For recruitment planning, 20% reported a specific sampling target, while 6% used existing studies or literature for organisational and content planning. A further 10% reported previous recruitment experience of the researchers. The studies varied in terms of number of participants (range = 7-202) and group size (range = 7-20). Recruitment occurred often in healthcare settings, rarely through digital channels and everyday places. FG participants were most commonly recruited by the research team (21%) or by health professionals (16%), with less collaboration with public organisations (10%) and little indication of the number of people involved (13%). A financial incentive for participants was used in 43% of cases, and 19% reported participatory approaches to plan and carry out recruitment. 65 studies (81%) reported a total of 58 limitations related to recruitment.</p><p><strong>Conclusions: </strong>The reporting of recruitment often seems to be incomplete, and its performance lacking. Hence, guidelines and recruitment recommendations designed to assist researchers are not yet adequately serving their purpose. Researchers may benefit from more practical support, such as early training on key principles and options for effective recruitment strategies provided by institutions in their immediate professional environment, e.g. universities, faculties or scientific associations.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"9"},"PeriodicalIF":3.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Survival parametric modeling for patients with heart failure based on Kernel learning. 基于核学习的心衰患者生存参数建模。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-11 DOI: 10.1186/s12874-024-02455-4
Maryam Montaseri, Mansour Rezaei, Armin Khayati, Shayan Mostafaei, Mohammad Taheri
{"title":"Survival parametric modeling for patients with heart failure based on Kernel learning.","authors":"Maryam Montaseri, Mansour Rezaei, Armin Khayati, Shayan Mostafaei, Mohammad Taheri","doi":"10.1186/s12874-024-02455-4","DOIUrl":"10.1186/s12874-024-02455-4","url":null,"abstract":"<p><p>Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by injecting non-linearity into linear models. In this study, a Multiple Kernel Learning (MKL) method has been proposed to optimize survival outcomes under the Accelerated Failure Time (AFT) model, a useful alternative to the Proportional Hazards (PH) frailty model. In other words, a survival parametric regression framework has been presented for clinical data to effectively integrate kernel learning with AFT model using a gradient descent optimization strategy. This methodology involves applying four different parametric models, evaluated using 19 distinct kernels to extract the best fitting scenario. This culminated in a sophisticated strategy that combined these kernels through MKL. We conducted a comparison between the Frailty model and MKL due to their shared fundamental properties. The models were assessed using the Concordance index (C-index) and Brier score (B-score). Each model was tested on both a case study and a replicated/independent dataset. The outcomes showed that kernelization enhances the performance of the model, especially by combining selected kernels for MKL.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"7"},"PeriodicalIF":3.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dropping out of a peripartum depression mHealth study: participants' motives and suggestions for improvement. 退出围产期抑郁症移动健康研究:参与者的动机和改善建议。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-11 DOI: 10.1186/s12874-025-02462-z
Hanna Wierenga, Konstantina V Pagoni, Alkistis Skalkidou, Fotios C Papadopoulos, Femke Geusens
{"title":"Dropping out of a peripartum depression mHealth study: participants' motives and suggestions for improvement.","authors":"Hanna Wierenga, Konstantina V Pagoni, Alkistis Skalkidou, Fotios C Papadopoulos, Femke Geusens","doi":"10.1186/s12874-025-02462-z","DOIUrl":"10.1186/s12874-025-02462-z","url":null,"abstract":"<p><strong>Background: </strong>Peripartum depression is a common but potentially debilitating pregnancy complication. Mobile applications can be used to collect data throughout the pregnancy and postpartum period to improve understanding of early risk indicators.</p><p><strong>Aim: </strong>This study aimed to improve understanding of why women drop out of a peripartum depression mHealth study, and how we can improve the app design.</p><p><strong>Method: </strong>Participants who dropped out of the Mom2B study (n = 134) answered closed and open questions on their motives for dropping out of the study, suggestions for improvement, and preferred timeframe of the study. A mix of quantitative and qualitative strategies was used to analyze the responses.</p><p><strong>Results: </strong>The most common reasons for discontinuation were lack of time, problems with or loss of the pregnancy, the use of other pregnancy applications, surveys being too lengthy, the app draining too much battery, and participants incorrectly believing that their answers were irrelevant for the study. Participants suggested fewer survey moments, more reminders, and a need for more unique content compared to commercially available apps.</p><p><strong>Conclusions: </strong>Researcher who want to use mHealth designs in peripartum studies need to ensure that their study designs are as time-efficient as possible, remind participants about the study, manage expectations about the study and what is expected of participants throughout the study, design their apps to be attractive in a competitive market, and follow-up with participants who are excluded from the study due to pregnancy complications.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"6"},"PeriodicalIF":3.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of a model to identify polycystic ovary syndrome in the French national administrative health database. 开发和验证一个模型,以确定多囊卵巢综合征在法国国家行政卫生数据库。
IF 3.9 3区 医学
BMC Medical Research Methodology Pub Date : 2025-01-10 DOI: 10.1186/s12874-024-02447-4
Eugénie Micolon, Sandrine Loubiere, Appoline Zimmermann, Julie Berbis, Pascal Auquier, Blandine Courbiere
{"title":"Development and validation of a model to identify polycystic ovary syndrome in the French national administrative health database.","authors":"Eugénie Micolon, Sandrine Loubiere, Appoline Zimmermann, Julie Berbis, Pascal Auquier, Blandine Courbiere","doi":"10.1186/s12874-024-02447-4","DOIUrl":"10.1186/s12874-024-02447-4","url":null,"abstract":"<p><strong>Background: </strong>We aimed to develop and validate an algorithm for identifying women with polycystic ovary syndrome (PCOS) in the French national health data system.</p><p><strong>Methods: </strong>Using data from the French national health data system, we applied the International Classification of Diseases (ICD-10) related diagnoses E28.2 for PCOS among women aged 18 to 43 years in 2021. Then, we developed an algorithm to identify PCOS using combinations of clinical criteria related to specific drugs claims, biological exams, international classification of Diseases (ICD-10) related diagnoses during hospitalization, and/or registration for long-term conditions. The sensitivity, specificity and positive predictive value (PPV) of different combinations of algorithm criteria were estimated by reviewing the medical records of the Department of Reproductive Medicine at a university hospital for the year 2022, comparing potential women identified as experiencing PCOS by the algorithms with a list of clinically registered women with or without PCOS.</p><p><strong>Results: </strong>We identified 2,807 (0.01%) women aged 18 to 43 who received PCOS-related care in 2021 using the ICD-10 code for PCOS in the French National health database. By applying the PCOS algorithm to 349 women, the positive and negative predictive values were 0.90 (95%CI (83-95) and 0.93 (95%CI 0.90-0.96) respectively. The sensitivity of the PCOS algorithm was estimated at 0.85 (95%CI 0.77-0.91) and the specificity at 0.96 (95%CI 0.92-0.98).</p><p><strong>Conclusion: </strong>The validity of the PCOS diagnostic algorithm in women undergoing reproductive health care was acceptable. Our findings may be useful for future studies on PCOS using administrative data on a national scale, or even on an international scale given the similarity of coding in this field.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"5"},"PeriodicalIF":3.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信