Brain最新文献

筛选
英文 中文
Monoallelic de novo variants in DDX17 cause a neurodevelopmental disorder DDX17的单等位基因从头变异导致神经发育障碍
IF 14.5 1区 医学
Brain Pub Date : 2024-10-15 DOI: 10.1093/brain/awae320
Eleanor G Seaby, Annie Godwin, Géraldine Meyer-Dilhet, Valentine Clerc, Xavier Grand, Tia Fletcher, Laloe Monteiro, Martijn Kerkhofs, Valerio Carelli, Flavia Palombo, Marco Seri, Giulia Olivucci, Mina Grippa, Claudia Ciaccio, Stefano D’Arrigo, Maria Iascone, Marion Bermudez, Jan Fischer, Nataliya Di Donato, Sophie Goesswein, Marco L Leung, Daniel C Koboldt, Cortlandt Myers, Gudny Anna Arnadottir, Kari Stefansson, Patrick Sulem, Ethan M Goldberg, Ange-Line Bruel, Frederic Tran Mau Them, Marjolaine Willems, Hans Tomas Bjornsson, Hakon Bjorn Hognason, Eirny Tholl Thorolfsdottir, Emanuele Agolini, Antonio Novelli, Giuseppe Zampino, Roberta Onesimo, Katherine Lachlan, Diana Baralle, Heidi L Rehm, Anne O’Donnell-Luria, Julien Courchet, Matt Guille, Cyril F Bourgeois, Sarah Ennis
{"title":"Monoallelic de novo variants in DDX17 cause a neurodevelopmental disorder","authors":"Eleanor G Seaby, Annie Godwin, Géraldine Meyer-Dilhet, Valentine Clerc, Xavier Grand, Tia Fletcher, Laloe Monteiro, Martijn Kerkhofs, Valerio Carelli, Flavia Palombo, Marco Seri, Giulia Olivucci, Mina Grippa, Claudia Ciaccio, Stefano D’Arrigo, Maria Iascone, Marion Bermudez, Jan Fischer, Nataliya Di Donato, Sophie Goesswein, Marco L Leung, Daniel C Koboldt, Cortlandt Myers, Gudny Anna Arnadottir, Kari Stefansson, Patrick Sulem, Ethan M Goldberg, Ange-Line Bruel, Frederic Tran Mau Them, Marjolaine Willems, Hans Tomas Bjornsson, Hakon Bjorn Hognason, Eirny Tholl Thorolfsdottir, Emanuele Agolini, Antonio Novelli, Giuseppe Zampino, Roberta Onesimo, Katherine Lachlan, Diana Baralle, Heidi L Rehm, Anne O’Donnell-Luria, Julien Courchet, Matt Guille, Cyril F Bourgeois, Sarah Ennis","doi":"10.1093/brain/awae320","DOIUrl":"https://doi.org/10.1093/brain/awae320","url":null,"abstract":"DDX17 is an RNA helicase shown to be involved in critical processes during the early phases of neuronal differentiation. Globally, we compiled a case-series of 11 patients with neurodevelopmental phenotypes harbouring de novo monoallelic variants in DDX17. All 11 patients in our case series had a neurodevelopmental phenotype, whereby intellectual disability, delayed speech and language, and motor delay predominated. We performed in utero cortical electroporation in the brain of developing mice, assessing axon complexity and outgrowth of electroporated neurons, comparing wild-type and Ddx17 knockdown. We then undertook ex vivo cortical electroporation on neuronal progenitors to quantitatively assess axonal development at a single cell resolution. Mosaic ddx17 crispants and heterozygous knockouts in Xenopus tropicalis were generated for assessment of morphology, behavioural assays, and neuronal outgrowth measurements. We further undertook transcriptomic analysis of neuroblastoma SH-SY5Y cells, to identify differentially expressed genes in DDX17-KD cells compared to controls. Knockdown of Ddx17 in electroporated mouse neurons in vivo showed delayed neuronal migration as well as decreased cortical axon complexity. Mouse primary cortical neurons revealed reduced axon outgrowth upon knockdown of Ddx17 in vitro. The axon outgrowth phenotype was replicated in crispant ddx17 tadpoles and in heterozygotes. Heterozygous tadpoles had clear neurodevelopmental defects and showed an impaired neurobehavioral phenotype. Transcriptomic analysis identified a statistically significant number of differentially expressed genes involved in neurodevelopmental processes in DDX17-KD cells compared to control cells. We have identified potential neurodevelopment disease-causing variants in a gene not previously associated with genetic disease, DDX17. We provide evidence for the role of the gene in neurodevelopment in both mammalian and non-mammalian species and in controlling the expression of key neurodevelopment genes.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological biomarkers in muscle diseases relevant for follow-up and evaluation of treatment. 与随访和治疗评估相关的肌肉疾病生物标志物。
IF 14.5 1区 医学
Brain Pub Date : 2024-10-14 DOI: 10.1093/brain/awae323
Mads G Stemmerik,Giorgio Tasca,Nils Erik Gilhus,Laurent Servais,Alex Vicino,Lorenzo Maggi,Valeria Sansone,John Vissing
{"title":"Biological biomarkers in muscle diseases relevant for follow-up and evaluation of treatment.","authors":"Mads G Stemmerik,Giorgio Tasca,Nils Erik Gilhus,Laurent Servais,Alex Vicino,Lorenzo Maggi,Valeria Sansone,John Vissing","doi":"10.1093/brain/awae323","DOIUrl":"https://doi.org/10.1093/brain/awae323","url":null,"abstract":"Muscle diseases cover a diverse group of disorders that in most cases are hereditary. The rarity of the individual muscle diseases provides a challenge for researchers when wanting to establish natural history of the conditions and when trying to develop diagnostic tools, therapies, and outcome measures to evaluate disease progression. With emerging molecular therapies in many genetic muscle diseases, as well as biological therapies for the immune-mediated ones, biological biomarkers play an important role in both drug development and evaluation. In this review, we focus on the role of biological biomarkers in muscle diseases and discuss their utility as surrogate endpoints in therapeutic trials. We categorise these as either 1) disease unspecific markers, 2) markers of specific pathways that may be used for more than one disease or 3) disease-specific markers. We also propose that evaluation of specific therapeutic interventions benefits from biological markers that match the intervention.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schizophrenia-associated changes in neuronal subpopulations in the human midbrain. 人类中脑神经元亚群与精神分裂症相关的变化
IF 14.5 1区 医学
Brain Pub Date : 2024-10-14 DOI: 10.1093/brain/awae321
Astrid M Alsema,Sophie Puvogel,Laura Kracht,Marree J Webster,Cynthia Shannon Weickert,Bart J L Eggen,Iris E C Sommer
{"title":"Schizophrenia-associated changes in neuronal subpopulations in the human midbrain.","authors":"Astrid M Alsema,Sophie Puvogel,Laura Kracht,Marree J Webster,Cynthia Shannon Weickert,Bart J L Eggen,Iris E C Sommer","doi":"10.1093/brain/awae321","DOIUrl":"https://doi.org/10.1093/brain/awae321","url":null,"abstract":"Dysfunctional GABAergic and dopaminergic neurons are thought to exist in the ventral midbrain of patients with schizophrenia, yet transcriptional changes underpinning these abnormalities have not yet been localized to specific neuronal subsets. In the ventral midbrain, control over dopaminergic activity is maintained by both excitatory (glutamate) and inhibitory (GABA) input neurons. To further elucidate neuron pathology at the single-cell level, we characterized the transcriptional diversity of distinct NEUN+ populations in the human ventral midbrain and then tested for schizophrenia-associated changes in neuronal subset proportions and gene activity changes within neuronal subsets. Combining single nucleus RNA-sequencing with fluorescence-activated sorting of NEUN+ nuclei, we analysed 31,669 nuclei. Initially, we detected 18 transcriptionally distinct neuronal populations in the human ventral midbrain, including 2 \"mixed\" populations. The presence of neuronal populations in the midbrain was orthogonally validated with immunohistochemical stainings. \"Mixed\" populations contained nuclei expressing transcripts for vesicular glutamate transporter 2 (SLC17A6) and Glutamate Decarboxylase 2 (GAD2), but these transcripts were not typically co-expressed by the same nucleus. Upon more fine-grained subclustering of the 2 \"mixed\" populations, 16 additional subpopulations were identified that were transcriptionally classified as excitatory or inhibitory. In the midbrains of individuals with schizophrenia, we observed potential differences in the proportions of two (sub)populations of excitatory neurons, two subpopulations of inhibitory neurons, one \"mixed\" subpopulation, and one subpopulation of TH-expressing neurons. This may suggest that transcriptional changes associated with schizophrenia broadly affect excitatory, inhibitory, and dopamine neurons. We detected 99 genes differentially expressed in schizophrenia compared to controls within neuronal subpopulations identified from the 2 \"mixed\" populations, with the majority (67) of changes within small GABAergic neuronal subpopulations. Overall, single-nucleus transcriptomic analyses profiled a high diversity of GABAergic neurons in the human ventral midbrain, identified putative shifts in the proportion of neuronal subpopulations, and suggested dysfunction of specific GABAergic subpopulations in schizophrenia, providing directions for future research.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing cognitive performance prediction by white matter hyperintensity connectivity assessment 通过白质超强度连通性评估加强认知能力预测
IF 14.5 1区 医学
Brain Pub Date : 2024-10-14 DOI: 10.1093/brain/awae315
Marvin Petersen, Mirthe Coenen, Charles DeCarli, Alberto De Luca, Ewoud van der Lelij, Frederik Barkhof, Thomas Benke, Christopher P L H Chen, Peter Dal-Bianco, Anna Dewenter, Marco Duering, Christian Enzinger, Michael Ewers, Lieza G Exalto, Evan M Fletcher, Nicolai Franzmeier, Saima Hilal, Edith Hofer, Huiberdina L Koek, Andrea B Maier, Pauline M Maillard, Cheryl R McCreary, Janne M Papma, Yolande A L Pijnenburg, Reinhold Schmidt, Eric E Smith, Rebecca M E Steketee, Esther van den Berg, Wiesje M van der Flier, Vikram Venkatraghavan, Narayanaswamy Venketasubramanian, Meike W Vernooij, Frank J Wolters, Xin Xu, Andreas Horn, Kaustubh R Patil, Simon B Eickhoff, Götz Thomalla, J Matthijs Biesbroek, Geert Jan Biessels, Bastian Cheng
{"title":"Enhancing cognitive performance prediction by white matter hyperintensity connectivity assessment","authors":"Marvin Petersen, Mirthe Coenen, Charles DeCarli, Alberto De Luca, Ewoud van der Lelij, Frederik Barkhof, Thomas Benke, Christopher P L H Chen, Peter Dal-Bianco, Anna Dewenter, Marco Duering, Christian Enzinger, Michael Ewers, Lieza G Exalto, Evan M Fletcher, Nicolai Franzmeier, Saima Hilal, Edith Hofer, Huiberdina L Koek, Andrea B Maier, Pauline M Maillard, Cheryl R McCreary, Janne M Papma, Yolande A L Pijnenburg, Reinhold Schmidt, Eric E Smith, Rebecca M E Steketee, Esther van den Berg, Wiesje M van der Flier, Vikram Venkatraghavan, Narayanaswamy Venketasubramanian, Meike W Vernooij, Frank J Wolters, Xin Xu, Andreas Horn, Kaustubh R Patil, Simon B Eickhoff, Götz Thomalla, J Matthijs Biesbroek, Geert Jan Biessels, Bastian Cheng","doi":"10.1093/brain/awae315","DOIUrl":"https://doi.org/10.1093/brain/awae315","url":null,"abstract":"White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment and are a key imaging marker in evaluating brain health. However, WMH volume alone does not fully account for the extent of cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. Lesion network mapping (LNM) enables to infer if brain networks are connected to lesions and could be a promising technique for enhancing our understanding of the role of WMH in cognitive disorders. Our study employed LNM to test the following hypotheses: (1) LNM-informed markers surpass WMH volumes in predicting cognitive performance, and (2) WMH contributing to cognitive impairment map to specific brain networks. We analyzed cross-sectional data of 3,485 patients from 10 memory clinic cohorts within the Meta VCI Map Consortium, using harmonized test results in 4 cognitive domains and WMH segmentations. WMH segmentations were registered to a standard space and mapped onto existing normative structural and functional brain connectome data. We employed LNM to quantify WMH connectivity to 480 atlas-based gray and white matter regions of interest (ROI), resulting in ROI-level structural and functional LNM scores. We compared the capacity of total and regional WMH volumes and LNM scores in predicting cognitive function using ridge regression models in a nested cross-validation. LNM scores predicted performance in three cognitive domains (attention/executive function, information processing speed, and verbal memory) significantly better than WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed that higher LNM scores, representing greater connectivity to WMH, in gray and white matter regions of the dorsal and ventral attention networks were associated with lower cognitive performance. Measures of WMH-related brain network connectivity significantly improve the prediction of current cognitive performance in memory clinic patients compared to WMH volume as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network integrity, particularly in attention-related brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving forward, refining WMH information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate the identification of subgroups at risk of cognitive disorders.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Our evolving understanding of the impact of primary HIV infection on brain health 我们对原发性艾滋病毒感染对大脑健康影响的认识在不断发展
IF 14.5 1区 医学
Brain Pub Date : 2024-10-12 DOI: 10.1093/brain/awae310
Alan Winston, Merle Henderson
{"title":"Our evolving understanding of the impact of primary HIV infection on brain health","authors":"Alan Winston, Merle Henderson","doi":"10.1093/brain/awae310","DOIUrl":"https://doi.org/10.1093/brain/awae310","url":null,"abstract":"This scientific commentary refers to ‘Serum and CSF biomarkers in neurologically asymptomatic patients during primary HIV infection: a randomized study’ by Calcagno et al. (https://doi.org/10.1093/brain/awae271).","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerebral microbleeds in Taiwanese patients with neuronal intranuclear inclusion disease. 台湾神经元核内包涵体病患者的脑微小出血。
IF 14.5 1区 医学
Brain Pub Date : 2024-10-12 DOI: 10.1093/brain/awae326
Yi-Chu Liao,Shao-Lun Hsu,Cheng-Tsung Hsiao,Yi-Chung Lee
{"title":"Cerebral microbleeds in Taiwanese patients with neuronal intranuclear inclusion disease.","authors":"Yi-Chu Liao,Shao-Lun Hsu,Cheng-Tsung Hsiao,Yi-Chung Lee","doi":"10.1093/brain/awae326","DOIUrl":"https://doi.org/10.1093/brain/awae326","url":null,"abstract":"","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysregulation of protein SUMOylation networks in Huntington's disease R6/2 mouse striatum. 亨廷顿病 R6/2 小鼠纹状体中蛋白质 SUMOylation 网络的失调。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-11 DOI: 10.1093/brain/awae319
Marketta Kachemov, Vineet Vaibhav, Charlene Smith, Niveda Sundararaman, Marie Heath, Devon F Pendlebury, Andrea Matlock, Alice Lau, Eva Morozko, Ryan G Lim, Jack Reidling, Joan S Steffan, Jennifer E Van Eyk, Leslie M Thompson
{"title":"Dysregulation of protein SUMOylation networks in Huntington's disease R6/2 mouse striatum.","authors":"Marketta Kachemov, Vineet Vaibhav, Charlene Smith, Niveda Sundararaman, Marie Heath, Devon F Pendlebury, Andrea Matlock, Alice Lau, Eva Morozko, Ryan G Lim, Jack Reidling, Joan S Steffan, Jennifer E Van Eyk, Leslie M Thompson","doi":"10.1093/brain/awae319","DOIUrl":"https://doi.org/10.1093/brain/awae319","url":null,"abstract":"<p><p>Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat mutation in the Huntingtin (HTT) gene. The mutation impacts neuronal protein homeostasis and cortical/striatal circuitry. SUMOylation is a post-translational modification with broad cellular effects including via modification of synaptic proteins. Here, we used an optimised SUMO protein-enrichment and mass spectrometry method to identify the protein SUMOylation/SUMO interaction proteome in the context of HD using R6/2 transgenic and non-transgenic (NT) mice. Significant changes in enrichment of SUMOylated and SUMO-interacting proteins were observed, including those involved in presynaptic function, cytomatrix at the active zone scaffolding, cytoskeleton organization, and glutamatergic signaling. Mitochondrial and RNA-binding proteins also showed altered enrichment. Modified SUMO-associated pathways in HD tissue include clathrin-mediated endocytosis signaling, synaptogenesis signaling, synaptic long-term potentiation, and SNARE signaling. To evaluate how modulation of SUMOylation might influence functional measures of neuronal activity in HD cells in vitro, we utilised primary neuronal cultures from R6/2 and NT mice. A receptor internalization assay for the metabotropic glutamate receptor 7 (mGLUR7), a SUMO enriched protein in the mass spec, showed decreased internalization in R6/2 neurons compared to NT. siRNA-mediated knockdown of the E3 SUMO ligase Protein Inhibitor of Activated STAT1 (Pias1), which can SUMO modify mGLUR7, prevented this HD phenotype. In addition, microelectrode array analysis of primary neuronal cultures indicated early hyperactivity in HD cells, while later timepoints demonstrated deficits in several measurements of neuronal activity within cortical neurons. HD phenotypes were rescued at selected timepoints following knockdown of Pias1. Collectively, our results provide a mouse brain SUMOome resource and show that significant alterations occur within the post-translational landscape of SUMO-protein interactions of synaptic proteins in HD mice, suggesting that targeting of synaptic SUMO networks may provide a proteostatic systems-based therapeutic approach for HD and other neurological. Disorders.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct interrogation of cortical interneuron circuits in amyotrophic lateral sclerosis. 直接检测肌萎缩性脊髓侧索硬化症的皮层中间神经元回路。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-10 DOI: 10.1093/brain/awae317
Mehdi A J van den Bos, Parvathi Menon, Nathan Pavey, Mana Higashihara, Matthew C Kiernan, Steve Vucic
{"title":"Direct interrogation of cortical interneuron circuits in amyotrophic lateral sclerosis.","authors":"Mehdi A J van den Bos, Parvathi Menon, Nathan Pavey, Mana Higashihara, Matthew C Kiernan, Steve Vucic","doi":"10.1093/brain/awae317","DOIUrl":"https://doi.org/10.1093/brain/awae317","url":null,"abstract":"<p><p>Cortical hyperexcitability is a key pathogenic feature of amyotrophic lateral sclerosis (ALS), believed to be mediated through complex interplay of cortical interneurons. To date, there has been no technological approach to facilitate the direct capture of cortical interneuron function. Through combination of transcranial magnetic stimulation (TMS) with advanced EEG, the present study examined GABA-ergic dysfunction in ALS, through recording focussed cortical output whilst applying TMS over the primary motor cortex contralateral to the site of symptom onset. Using both a single pulse and novel inhibitory paired-pulse paradigms, TMS-EEG studies were undertaken on 21 ALS patients and results compared to healthy controls. TMS responses captured by EEG form a discrete waveform known as the transcranial evoked potential (TEP), with positive (P) or upward deflections occurring at 30ms (P30), 60 ms (P60) and 190 ms (P190) after TMS stimulus. Negative (N) or downward deflections occur at 44 ms (N44), 100 ms (N100) and 280ms (N280) after T,MS stimulus. The single pulse TEPs recorded in ALS patients demonstrated novel differences suggestive of cortical GABA-ergic dysfunction. When compared to controls, the N100 component was significantly reduced (P<0.05) while the P190 component increased (P<0.05) in ALS patients. Additionally, the N44 component correlated with muscle weakness (r=-0.501, P<0.05). These finding were supported by reduced paired pulse inhibition of TEP components in ALS patients (P60, P<0.01; N100, P<0.005), consistent with dysfunction of cortical interneuronal GABAA-ergic circuits. Further, the reduction in SICI, as reflected by changes in paired-pulse inhibition of the N100 component, was associated with longer disease duration in ALS patients (r=-0.698, P<0.001). In conclusion, intensive and focussed interrogation of the motor cortex utilising novel TMS-EEG combined technologies has established localised dysfunction of GABA-ergic circuits, supporting the notion that cortical hyperexcitability is mediated by cortical disinhibition in ALS. Dysfunction of GABA-ergic circuits correlated with greater clinical disability and disease duration implying pathophysiological significance.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Somatic instability of the FGF14-SCA27B GAA•TTC repeat reveals a marked expansion bias in the cerebellum FGF14-SCA27B GAA-TTC 重复的体细胞不稳定性揭示了小脑中明显的扩增偏向
IF 14.5 1区 医学
Brain Pub Date : 2024-10-08 DOI: 10.1093/brain/awae312
David Pellerin, Jean-Loup Méreaux, Susana Boluda, Matt C Danzi, Marie-Josée Dicaire, Claire-Sophie Davoine, David Genis, Guinevere Spurdens, Catherine Ashton, Jillian M Hammond, Brandon J Gerhart, Viorica Chelban, Phuong U Le, Maryam Safisamghabadi, Christopher Yanick, Hamin Lee, Sathiji K Nageshwaran, Gabriel Matos-Rodrigues, Zane Jaunmuktane, Kevin Petrecca, Schahram Akbarian, André Nussenzweig, Karen Usdin, Mathilde Renaud, Céline Bonnet, Gianina Ravenscroft, Mario A Saporta, Jill S Napierala, Henry Houlden, Ira W Deveson, Marek Napierala, Alexis Brice, Laura Molina Porcel, Danielle Seilhean, Stephan Zuchner, Alexandra Durr, Bernard Brais
{"title":"Somatic instability of the FGF14-SCA27B GAA•TTC repeat reveals a marked expansion bias in the cerebellum","authors":"David Pellerin, Jean-Loup Méreaux, Susana Boluda, Matt C Danzi, Marie-Josée Dicaire, Claire-Sophie Davoine, David Genis, Guinevere Spurdens, Catherine Ashton, Jillian M Hammond, Brandon J Gerhart, Viorica Chelban, Phuong U Le, Maryam Safisamghabadi, Christopher Yanick, Hamin Lee, Sathiji K Nageshwaran, Gabriel Matos-Rodrigues, Zane Jaunmuktane, Kevin Petrecca, Schahram Akbarian, André Nussenzweig, Karen Usdin, Mathilde Renaud, Céline Bonnet, Gianina Ravenscroft, Mario A Saporta, Jill S Napierala, Henry Houlden, Ira W Deveson, Marek Napierala, Alexis Brice, Laura Molina Porcel, Danielle Seilhean, Stephan Zuchner, Alexandra Durr, Bernard Brais","doi":"10.1093/brain/awae312","DOIUrl":"https://doi.org/10.1093/brain/awae312","url":null,"abstract":"Spinocerebellar ataxia 27B (SCA27B) is a common autosomal dominant ataxia caused by an intronic GAA•TTC repeat expansion in FGF14. Neuropathological studies have shown that neuronal loss is largely restricted to the cerebellum. Although the repeat locus is highly unstable during intergenerational transmission, it remains unknown whether it exhibits cerebral mosaicism and progressive instability throughout life. We conducted an analysis of the FGF14 GAA•TTC repeat somatic instability across 156 serial blood samples from 69 individuals, fibroblasts, induced pluripotent stem cells, and post-mortem brain tissues from six controls and six patients with SCA27B, alongside methylation profiling using targeted long-read sequencing. Peripheral tissues exhibited minimal somatic instability, which did not significantly change over periods of more than 20 years. In post-mortem brains, the GAA•TTC repeat was remarkably stable across all regions, except in the cerebellar hemispheres and vermis. The levels of somatic expansion in the cerebellar hemispheres and vermis were, on average, 3.15 and 2.72 times greater relative to other examined brain regions, respectively. Additionally, levels of somatic expansion in the brain increased with repeat length and tissue expression of FGF14. We found no significant difference in methylation of wild-type and expanded FGF14 alleles in post-mortem cerebellar hemispheres between patients and controls. In conclusion, our study revealed that the FGF14 GAA•TTC repeat exhibits a cerebellar-specific expansion bias, which may explain the pure cerebellar involvement in SCA27B.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myelination potential and injury susceptibility of grey versus white matter human oligodendrocytes 人类灰质和白质少突胶质细胞的髓鞘化潜能和易受伤性
IF 14.5 1区 医学
Brain Pub Date : 2024-10-08 DOI: 10.1093/brain/awae311
Qiao-Ling Cui, Abdulshakour Mohammadnia, Moein Yaqubi, Chao Weng, Marie-France Dorion, Florian Pernin, Jeffery A Hall, Roy Dudley, JoAnne Stratton, Timothy E Kennedy, Myriam Srour, Jack P Antel
{"title":"Myelination potential and injury susceptibility of grey versus white matter human oligodendrocytes","authors":"Qiao-Ling Cui, Abdulshakour Mohammadnia, Moein Yaqubi, Chao Weng, Marie-France Dorion, Florian Pernin, Jeffery A Hall, Roy Dudley, JoAnne Stratton, Timothy E Kennedy, Myriam Srour, Jack P Antel","doi":"10.1093/brain/awae311","DOIUrl":"https://doi.org/10.1093/brain/awae311","url":null,"abstract":"Increasing evidence indicates heterogeneity in functional and molecular properties of oligodendrocyte lineage cells both during development and under pathologic conditions. In multiple sclerosis, remyelination of grey matter lesions exceeds that in white matter. Here we used cells derived from grey matter versus white matter regions of surgically resected human brain tissue samples, to compare the capacities of human A2B5-positive progenitor cells and mature oligodendrocytes to ensheath synthetic nanofibers, and relate differences to the molecular profiles of these cells. For both cell types, the percentage of ensheathing cells was greater for grey matter versus white matter cells. For both grey matter and white matter samples, the percentage of cells ensheathing nanofibers was greater for A2B5-positive cells versus mature oligodendrocytes. Grey matter A2B5-positive cells were more susceptible than white matter A2B5-positive cells to injury induced by metabolic insults. Bulk RNA sequencing indicated that separation by cell type (A2B5-positive vs mature oligodendrocytes) is more significant than by region but segregation for each cell type by region is apparent. Molecular features of grey matter versus white matter derived A2B5-positive and mature oligodendrocytes were lower expression of mature oligodendrocyte genes and increased expression of early oligodendrocyte lineage genes. Genes and pathways with increased expression in grey matter derived cells with relevance for myelination included those related to responses to external environment, cell-cell communication, cell migration, and cell adhesion. Immune and cell death related genes were up-regulated in grey matter derived cells. We observed a significant number of up-regulated genes shared between the stress/injury and myelination processes, providing a basis for these features. In contrast to oligodendrocyte lineage cells, no functional or molecular heterogeneity was detected in microglia maintained in vitro, likely reflecting the plasticity of these cells ex vivo. The combined functional and molecular data indicate that grey matter human oligodendrocytes have increased intrinsic capacity to myelinate but also increased injury susceptibility, in part reflecting their being at a stage earlier in the oligodendrocyte lineage.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信