Johannes Prechtl, Felix Scherf, J. Kunze, K. Flaßkamp, G. Rizzello
{"title":"An energy-based model for both rate-dependent and rate-independent hysteretic effects in uniaxially-loaded dielectric elastomer actuators","authors":"Johannes Prechtl, Felix Scherf, J. Kunze, K. Flaßkamp, G. Rizzello","doi":"10.1117/12.2657685","DOIUrl":"https://doi.org/10.1117/12.2657685","url":null,"abstract":"It is widely known that dielectric elastomer (DE) material exhibits a strongly rate-dependent hysteresis in their stress-stretch response. It is experimentally observed, however, that the hysteresis of some DE materials (e.g., silicone) behaves as practically rate-independent when operating in the sub-Hz range. Despite this fact, the investigation and modeling of rate-independent hysteretic effects in DEs has received much less attention in the literature, compared to the rate-dependent ones. In this paper, we propose a new lumped-parameter dynamic model capable of describing a stress-stretch DE hysteresis with both rate-dependent and rate-independent effects. The model is grounded on a physics-based approach, combining classic thermodynamically-consistent modeling of DE large deformations and electro-mechanical coupling with a new energy-based Maxwell-Lion description of the hysteretic process. After presenting the theory, the model is validated by means of experiments conducted on silicone-based rolled DE actuators.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"49 1","pages":"124820Q - 124820Q-10"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89978707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vibration control of a two-story base-isolated building using a new tuned mass multi-sliding friction damper","authors":"M. Amjadian, Syed Muhammad Bilal Haider","doi":"10.1117/12.2661140","DOIUrl":"https://doi.org/10.1117/12.2661140","url":null,"abstract":"This paper studies the use of a new Tuned Mass Multi-Sliding Friction Damper (TMMSFD) to increase the damping capacity of seismic isolators installed on a two-story base-isolated building to limit their lateral deformations. The proposed TMMSFD consists of a set of several masses that are laterally attached to the superstructure floor through linear springs. These masses are placed on top of each other one by one and are allowed to slide with respect to each other during the earthquake. The bottom mass that carries the weight of upper masses is in contact with the superstructure floor. The damping of system is supplied by the friction generated along the sliding friction surfaces. The TMMSFD has a low cost of installation, operation, and maintenance compared to common TMDs that use viscous fluid dampers for energy dissipation. The mechanical model of TMMSFD is installed on the numerical model of a two-story base-isolated building equipped with elastomeric rubber bearings in order to evaluate its performance in limiting the displacement of base floor. These models are created by the OpenSEESPy package which is a Python 3 interpreter of OpenSEES. A parametric study is performed to obtain the optimum design parameters of the TMMSFD including its total mass, frequency, and static friction coefficients of the siding surfaces for energy dissipation. The results of time-history analysis of numerical model show that the TMMSFD is capable of limiting the displacement of base floor with a little amount of friction implying its potential as a cost-effective tool for seismic protection.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"58 1","pages":"1248318 - 1248318-10"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88045209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physical reservoir-based structural health monitoring: a preliminary study","authors":"A. Masuda, Konosuke Takashima, Ryu Sakai","doi":"10.1117/12.2658742","DOIUrl":"https://doi.org/10.1117/12.2658742","url":null,"abstract":"The purpose of this study is to discuss the possibility of the concept of physical reservoir computing (PRC) in the field of structural health monitoring (SHM). PRC is a physical realization of a class of recurrent neural networks called reservoir computing (RC). This consists of an input layer, mutually connected network of neurons with strong nonlinearity with fixed coupling weights (referred to as reservoir), and an output layer with learnable weights. The key idea of PRC is to replace the reservoir part in RC by a specific physical entity, which has opened new possibilities of smart structures by providing a way to embed some sort of intelligence in structures. In this study, we propose to apply this framework to SHM by regarding the target structure itself as the physical reservoir. Unlike the conventional problem setting in PRC, our purpose is to detect the change occurred in the physical reservoir due to structural failure. In this paper, we propose one possible methodology to achieve this, in which the output layer is trained to learn some nonlinear function so that the increase of the error may indicate the change of the reservoir due to failure. A simple toy problem using a network of interconnected nonlinear oscillators are presented to examine the validity of the proposed method.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"23 1","pages":"1248311 - 1248311-7"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80126701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konstantinos Myronidis, G. M. Malfense Fierro, M. Meo, F. Pinto
{"title":"Investigation of a dynamic active/passive noise cancellation of polyborosiloxane thin membrane gel","authors":"Konstantinos Myronidis, G. M. Malfense Fierro, M. Meo, F. Pinto","doi":"10.1117/12.2660857","DOIUrl":"https://doi.org/10.1117/12.2660857","url":null,"abstract":"This study proposes a multifunctional, thin membrane gel based on a formulation of PDMS and boron. The proposed gel offers a dynamic passive stimuli-responsive sound absorption at low frequencies, which can be transformed to active noise cancellation with the use of a secondary sound source. The passive behaviour of the proposed material is the result of a dynamic phase transition in the material’s polymeric network, activated by the interaction with the travelling sound pressure wave. The presence and extent of the phase transition in the material was investigated via Fourier transform infrared spectroscopy and oscillatory rheological measurements, where it was found that the amount of boron in the gel has a crucial role on the occurrence of the phase transition and consequently on its acoustic performance. The passive scenario results revealed a high and dynamic absorption of approximately 80% at the absorption coefficient peaks, which dynamically shifted to lower frequencies while sound amplitudes were increased. The active noise cancellation was successfully demonstrated at the lower frequencies range, as the occurrence of the phase transition was actively controlled via the sound pressure wave introduced. The aforementioned phase transition was intensified, with energy consumed in this process, resulting in a dynamic noise cancellation. These results demonstrated that the proposed gel membrane material can be used to develop active/passive deep subwavelength absorbers with unique properties, which can dynamically tune their performance in response to external stimuli, and that can be further controlled/activated with the use of mechanical transducers.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"28 1","pages":"124831H - 124831H-14"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83498243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of semi-active damping strategies for magnetorheological sandwich beams","authors":"C. Vazquez, J. Ortega, Jeffrey L. Kauffman","doi":"10.1117/12.2657481","DOIUrl":"https://doi.org/10.1117/12.2657481","url":null,"abstract":"The purpose of this research is to measure the free-decay dynamics of a magnetorheological (MR) sandwich beam when influenced by a semi-active magnetic field and comparing the resulting damping performance to those of baseline fields. The research effort involved an experiment where the beam freely decayed while in a magnetic field that influences the MR sandwich beam, altering its damping performance. In addition to baseline cases of no magnetic field or a constant field, the electromagnet also had a field that would shut off after a set time and a field that would switch between a high and low field strength at a certain frequency. These results were also recreated numerically, which required an experimental modal analysis to gather certain material property data. The experimental findings showed little variation in the damping performance regardless of the magnetic field used, while the numerical analysis indicate that the magnetic fields would quicken damping, but only slightly. The results suggest that improvements to the sandwich beam structure may yield the greatest improvement in MR-fluid-based damping performance.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"76 1","pages":"1248313 - 1248313-11"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86167673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dielectric elastomer sensors adapted for monitoring compression load of clamped battery cells","authors":"Johannes Ziegler, Detlev Uhl, H. Böse","doi":"10.1117/12.2658246","DOIUrl":"https://doi.org/10.1117/12.2658246","url":null,"abstract":"Condition monitoring of Li-ion cells in battery packs for electric vehicles is becoming increasingly important, not only in terms of safety, but also with respect to predictive maintenance and recycling applications of the battery. Parameters already monitored by the battery management system are the pack temperature and electrical properties such as cell voltage and current flow. The compression load in a stacked battery pack, which changes not only during charging and discharging but also during aging, would provide valuable information about the health condition of the cell. This work shows the development of a dielectric elastomer sensor (DES) system especially adapted for monitoring the compression load of clamped Li-ion cells. By attaching special elastomer-based structures on both sides of an elastomer film, a thin and soft compression load sensor is realized. Various sensor configurations were investigated in order to increase the sensor performance in the required pressure range of the battery cell. The sensor design was varied by using different structures or by modifying the elastomer material or the electrodes of the intermediate elastomer film. The sensor characterization was performed by applying a controlled compression load and simultaneously recording the capacitance signals of the sensor. First cycling experiments using a sensor array in a clamped setup with the battery cell showed that the sensor capacitance depends on the compression load as the cell is charged and discharged. This result demonstrates the great potential in the field of condition monitoring of Li-ion battery cells.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"468 1","pages":"124820J - 124820J-15"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85996550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomoki Motohashi, Naoki Ogawa, Hideko Akai, J. Shintake
{"title":"Peristaltic pumps based on polyvinyl chloride gel actuator","authors":"Tomoki Motohashi, Naoki Ogawa, Hideko Akai, J. Shintake","doi":"10.1117/12.2657831","DOIUrl":"https://doi.org/10.1117/12.2657831","url":null,"abstract":"Polyvinyl chloride (PVC) gel actuators, as an electroactive material, have promising features, such as large actuation strokes and fast response, generated with a simple structure at relatively low applied voltage. Hence, the effective exploitation of these features should enable pumps with high output performance and scalability. In this study, we present a peristaltic pump using PVC gel actuators. Specifically, the pump comprises three sets of rigid electrodes sandwiching a PVC gel membrane. Thus, applying a voltage to the electrodes leads to a deformation in the thickness direction. Consequently, this deformation squeezes a liquid below the membrane, resulting in a flow. Further, the sequential actuation of each electrode pair realizes peristaltic motion that generates a continuous flow of a liquid in one direction. In particular, we fabricated a pump using a PVC gel with a micro-patterned surface. More precisely, the surface pattern comprises 300 μm-base square pyramids (height 261 μm). Due to the relatively large surface pattern compared to the previous study, a large displacement in the thickness direction of ~110 μm was observed at a voltage of more than 500 V. Additionally, the maximum flow rate generated from the pump was 195.3 μL/min at 0.5 Hz. This value is comparable to or even higher than the values obtained in previous pumps that utilized PVC gel actuators.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"14 1","pages":"124820T - 124820T-5"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86030746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Piezoelectric-array-based MISO diagnostic system for CNN-condition monitoring of bearing/gearbox instruments","authors":"Y. Lo, Y. Chiu, W. T. Liu, Y. C. Shu","doi":"10.1117/12.2657942","DOIUrl":"https://doi.org/10.1117/12.2657942","url":null,"abstract":"The article presents a novel MISO (multi-input-single-output) diagnostic system suitable for spatial condition monitoring of bearing/gearbox instruments with multi-location defects. The sensor array consists of three piezoelectric patches: one is attached to the surface of the bearing house and the other two connected in parallel are mounted on the wall of the planetary gear. These two sets of patches are electrically connected in series for sensing the fault signals whose sources of anomalies come from either the bearing or the gear. They offer an advantage of allowing a single voltage output from multiple inputs. In addition, two inductances are connected to the sensor array to form LC resonant circuits for filtering the irrelevant noise at high frequency. A convolutional neural network (CNN) classifier is trained by 12x150 FFT spectrums. The result from the testing data with 12x10 FFT spectrums shows that the average accuracy is achieved to be as high as 92:5%, confirming the soundness of the proposed model.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"15 1","pages":"1248314 - 1248314-9"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86381641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-propelled two-dimensional rotary piezoelectric plate actuator","authors":"Sz-Rung Lai, Y. Hsu, Chih-Kung Lee","doi":"10.1117/12.2657664","DOIUrl":"https://doi.org/10.1117/12.2657664","url":null,"abstract":"The aim of this study is to develop a self-propelled, two-dimensional rotary piezoelectric plate actuator driven by a superposition of bending modes. It is achieved by generating two opposite-direction traveling waves on a thin rectangular plate. The structure design of this rotational actuator was simple and a cost-effective. The structure was composed of a 50mm*41mm*0.5mm stainless steel plate and two 50mm*20mm*0.2mm piezoelectric PZTs sheets attached to its surface. The boundary conditions were simply supported in the x-direction and free ends in the y-direction. To generate traveling waves in opposite directions in the x and y directions, mode 12, mode 21, and mode 22 bending modes were chosen using a multi-integer frequency, two-mode driving method (MIF-TM). An analytical solution was derived to optimize the driving efficiency. The Hilbert transform is also applied to identify the optimal driving parameters. It is demonstrated that traveling waves in opposite directions can be generated. Mathematical modeling and experimental studies are both detailed in this paper.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"1 1","pages":"124831M - 124831M-8"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87811180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wave propagation study in metamaterial sandwich structure with periodically inserted hourglass resonators","authors":"Vivek Gupta, Amanpreet Singh, B. Bhattacharya","doi":"10.1117/12.2658496","DOIUrl":"https://doi.org/10.1117/12.2658496","url":null,"abstract":"Low-frequency bandgaps are generally achieved by using locally resonant metamaterials at much higher wavelengths than the lattice constant. However, it remains a challenge to control wave propagation and vibration in these structures due to the limited number of conventional options available as periodic unit cell arrangements. This work investigates the band structure of flexural waves in a metamaterial sandwich beam with an hourglass lattice core using the transfer matrix method. The double dome-shaped hourglass unit cell is modelled with different non-dimensional geometric ratios. A sandwiched metamaterial beam model is then established using a periodic finite hourglass array, considered under the flexural wave propagation. The complete hourglass sandwiched system is further studied to obtain the bandgaps corresponding to the microstructure of the hourglass which is varied in the frequency domain. Subsequently, parametric analysis is performed using some specific non-dimensional geometric parameters that are found to be sensitive towards tailoring the mechanical properties of such unit cells. This study builds a foundation for modelling lightweight hourglass lattice sandwich beams with complex dome shape structures and presents guidelines for designing sandwich beams to control wave propagation.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"7 1","pages":"1248309 - 1248309-8"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80270095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}