L. Yin, X. L. Chen, S. L. Ma, F. Li, F. Zhou, Yongyan Wang
{"title":"Purification, immunological, and functional characterization of MxFIT in Malus xiaojinensis","authors":"L. Yin, X. L. Chen, S. L. Ma, F. Li, F. Zhou, Yongyan Wang","doi":"10.32615/BP.2021.004","DOIUrl":"https://doi.org/10.32615/BP.2021.004","url":null,"abstract":"MxFIT is a FER-like iron deficiency induced transcriptional factor in Malus xiaojinensis. Here, we described the heterologous expression of MxFIT in Escherichia coli BL21 (DE3) host cells. The E. coli harboring the recombinant construct pET-MxFIT was efficiently induced to express the MxFIT protein at a high level and the optimal profile for MxFIT expression was investigated. By inoculating a New Zealand rabbit with purified MxFIT-His fusion protein, a high specific anti-MxFIT antiserum was achieved. Western blot analysis showed MxFIT protein expression was induced in roots when iron supply was limiting and was inhibited when iron supply was excessive. In leaves, there was almost no expression irrespective of iron supply. The localization of MxFIT on transverse section of root indicated that MxFIT participated in iron deficiency response. Over-expression of MxFIT in transgenic tobacco suspension cells showed that MxFIT increased iron absorption under insufficient iron supply. This study provides a basis for further investigating the underlying mechanism of high iron absorption efficiency in M. xiaojinensis.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"177-183"},"PeriodicalIF":1.5,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46123221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Nuanlaong, S. Wuthisuthimathavee, P. Suraninpong
{"title":"Lysigenous aerenchyma formation: responsiveness to waterlogging in oil palm roots","authors":"S. Nuanlaong, S. Wuthisuthimathavee, P. Suraninpong","doi":"10.32615/BP.2021.002","DOIUrl":"https://doi.org/10.32615/BP.2021.002","url":null,"abstract":"Oil palm (Elaeis guineensis Jacq.) responds to waterlogging stress by induction of lysigenous aerenchyma tissues, which facilitates the flow of oxygen through their root tissues for survival under waterlogged conditions. Thus, the morphological and genetic adaptation involved in lysigenous aerenchyma formation in the roots of the oil palm genotype Deli × Calabar under waterlogging stress was evaluated. This study found the highest number of dead cells after waterlogging stress for 2 d in the secondary root, while the percentage of root porosity was increased with increasing of time in both roots, especially at 1.0 - 2.0 cm from the root tip. This change in cell morphology implied the formation of lysigenous aerenchyma in oil palm roots under waterlogging stress. At the same time, most of the candidate genes involved in lysigenous aerenchyma formation revealed a higher mRNA expression after waterlogging stress for 3 d. Genes of ethylene synthesis group ACS3, ACO, and ACO1 were highly up-regulated in both types of roots, while XTH22, XTH23, and CEL12 in the cell wall modification group were more highly up-regulated in the primary roots than in the secondary roots. CML11, CAMTA4, TCTP, and CPI1 in a signaling group were up-regulated in the primary roots, but they were down-regulated in the secondary roots. NAC29, ERF1, ERF113, and HSFA2C in a transcription factor group were strongly up-regulated in the oil palm roots. However, there have been no previous reports on the expression of CAMTA4, bHLH79, and bHLH94 under waterlogging conditions. Our findings confirm gene expression during lysigenous aerenchyma development in oil palm roots under waterlogging. It can also be stated that primary roots are an important part of the adaptation mechanism of oil palm roots for survival under waterlogging stress. Furthermore, the molecular markers of all expressed genes will be developed and applied in our oil palm breeding project for selection of waterlogging tolerance.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"167-176"},"PeriodicalIF":1.5,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47044327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. M. Pardo, L. Toum, L. S. Pérez-Borroto, L. Fleitas, J. P. Gallino, S. Machi, A. Vojnov, A. Castagnaro, B. Welin
{"title":"Ectopic expression of GmNHX3 and GmNHX1, encoding two Glycine max Na+/H+ vacuolar antiporters, improves water deficit tolerance in Arabidopsis thaliana","authors":"E. M. Pardo, L. Toum, L. S. Pérez-Borroto, L. Fleitas, J. P. Gallino, S. Machi, A. Vojnov, A. Castagnaro, B. Welin","doi":"10.32615/BP.2021.003","DOIUrl":"https://doi.org/10.32615/BP.2021.003","url":null,"abstract":"The importance of Na+/H+ antiporters in salt tolerance in plants has been demonstrated in many studies, but much less is known about their protective role during drought stress. To study their possible contribution to water deficit tolerance, two closely related soybean Na+/H+ antiporters belonging to the intracellular NHX exchanger protein family, GmNHX3 and GmNHX1, were evaluated in transgenic Arabidopsis thaliana. A. thaliana plants ectopically expressing GmNHX3 or GmNHX1 displayed a more drought-tolerant phenotype compared to wild-type plants, which was accompanied by an increase in relative water content and chlorophyll content during stress conditions. Both GmHNX1 and GmHNX3 transgenic lines accumulated higher amounts of Na+ and K+ cations, showed increased antioxidant enzyme activities and less membrane damage due to lipid peroxidation under water deficit, as compared to non-transformed plants. Furthermore, plants expressing GmNHX3 showed an increased sensitivity to abscisic acid as deduced from stomatal closure and seed germination inhibition studies. Finally, a significant up-regulation of abiotic stress-related genes was observed in both transgenic lines compared to wild-type plants in response to abscisic acid and mannitol treatments. These results demonstrate that GmNHX3 and GmNHX1 antiporters confer protection during drought stress in A. thaliana and hence are potential genetic targets to improve drought tolerance in soybean and other crops.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"157-166"},"PeriodicalIF":1.5,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46605178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physiological and transcriptomic analysis of Pinus massoniana seedling response to osmotic stress","authors":"H. Xu, X. Gao, C. Yu","doi":"10.32615/BP.2021.016","DOIUrl":"https://doi.org/10.32615/BP.2021.016","url":null,"abstract":"Masson pine (Pinus massoniana Lamb.) is an important tree species of high economic value in southern China, but osmotic stress threatens its growth and development. In this study, physiological measurements and RNA-Seq analysis were used to clarify the physiological and molecular responses of P. massoniana under osmotic stress. Osmotic treatment caused cell membrane damage and reactive oxygen species (ROS) accumulation in the tree seedlings, but it also increased their antioxidant enzyme (superoxide dismutase, peroxidase, and catalase) activities and osmotic substances (soluble sugars, proline, and trehalose) content so as to adjust to osmotic stress conditions. A total of 1 789 differentially expressed genes (DEGs) were identified by transcriptome sequencing, of which 962 were up-regulated and 827 genes down-regulated. A series of stress-induced genes associated with signal transduction, ROS-scavenging, osmotic regulation, late embryogenesis abundant (LEA) protein, pentatricopeptide repeat-containing protein, and transcription factors' regulation were distinguishable. This detailed investigation of the stress-responsive genes and pathways provides new insight into molecular mechanism of abiotic stress response in P. massoniana. Further, this study's data can contribute to genetic engineering or molecular breeding efforts to enhance osmotic resistance in P. massoniana stands.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"145-156"},"PeriodicalIF":1.5,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44947347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. L. Xu, Yaolei Zhang, J. M. Li, Tianpeng Gao, L. N. Zhang, L. Si, Qiang Li, G. Li, Y. Yang
{"title":"Comparison of antioxidant enzyme activity and gene expression in two new spring wheat cultivars treated with salinity","authors":"Y. L. Xu, Yaolei Zhang, J. M. Li, Tianpeng Gao, L. N. Zhang, L. Si, Qiang Li, G. Li, Y. Yang","doi":"10.32615/BP.2020.171","DOIUrl":"https://doi.org/10.32615/BP.2020.171","url":null,"abstract":"This study aimed to analyze element content, antioxidative response, and related gene expression in two new wheat (Tritium aestivum L.) cultivars Longchun 30 and Longchun 27 when exposed to different NaCl concentrations. Low NaCl concentration (25 mM) promoted root growth and decreased malondialdehyde (MDA) content and relative conductivity (REC) in Longchun 30. Differently, higher salinity stress (100 and 200 mM NaCl) inhibited root growth and increased MDA content and REC in both cultivars. Under salt stress, the increment of Na content in the roots and leaves and the reduction of Ca content in the roots were more remarkable in Longchun 27 than in Longchun 30. In contrast, the potassium content decreased in the roots but did not significantly change in the leaves in both cultivars under salinity. When the seedlings were exposed to salinity, the increases of superoxide dismutase (SOD) and catalase (CAT) activities in Longchun 27 roots were associated with high isoenzymes abundance and high TaCu/ZnSOD, TaMnSOD and TaCAT expression. Meanwhile, total peroxidase (POD) activity induced by NaCl treatment coincided with the changes of TaPOD expression and isoenzyme abundance in both cultivars. Besides, the inhibition of activities of apoplastic antioxidant enzymes, cell wall-bound POD, diamine oxidase, and polyamine oxidase was observed in salinity-stressed roots of both cultivars. Taken together, cv. Longchun 30 might be more suitable for growing in salinity environment in comparison with Longchun 27.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"131-144"},"PeriodicalIF":1.5,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41563071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microtubule interaction of LICC1, a maize homologue of a component of the human muskelin/RanBPM/CTLH protein complex","authors":"M. Miquel, D. Pagès-Vila, C. Vicient","doi":"10.32615/BP.2020.168","DOIUrl":"https://doi.org/10.32615/BP.2020.168","url":null,"abstract":"MRCTLH (muskelin/RanBPM/CTLH) is a protein complex found in humans (MRCTLH) that is involved in the regulation of numerous cellular processes, such as gluconeogenesis, cell signaling, development, nuclear extrusion, cell morphology, or stability of different proteins. According to genomic data, all eukaryotes have similar protein complexes. In yeast, a similar protein complex named GID was found to be involved in the regulation of gluconeogenesis. LICC1 is a maize protein whose sequence resembles that of TWA1 in humans and GID8 in yeast, which are central components of the MRCTLH and GID complexes. LICC1 contains three highly conserved protein domains, LisH, CTLH, and CRA, typical of this protein family. Twa1 and gid8 are unique genes in human and yeast genomes. However, three copies of licc1 are present in the maize genome and multiple copies are present in other plant genomes. This result suggests the presence of multiple variants of the MRCTLH/GID complex in plants, which could increase its regulatory capacity. We also demonstrate here that LICC1 has the ability to interact with microtubules, similarly to the human TWA1. This interaction reinforces the idea that the LICC1 protein from maize, and its homologues in plants and, in general, the GID/MRCTLH complex in plants, can perform biological functions similar to those in humans and yeast.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"126-130"},"PeriodicalIF":1.5,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44365073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Ogneva, O. A. Aleynova, A. R. Suprun, Y. Karetin, A. S. Dubrovina, K. Kiselev
{"title":"Tolerance of Arabidopsis thaliana plants overexpressing grapevine VaSTS1 or VaSTS7 genes to cold, heat, drought, salinity, and ultraviolet irradiation","authors":"Z. Ogneva, O. A. Aleynova, A. R. Suprun, Y. Karetin, A. S. Dubrovina, K. Kiselev","doi":"10.32615/BP.2020.139","DOIUrl":"https://doi.org/10.32615/BP.2020.139","url":null,"abstract":"Stilbene synthases (STS) are plant enzymes that are responsible for the biosynthesis of stilbenes, which are plant phenolic compounds with valuable biological properties. Stilbenes also play important roles in plant tolerance to biotic and abiotic stresses. Therefore, plants that overexpress STS genes can be more resistant to various stresses. This paper investigated the effects of STS gene overexpression in Arabidopsis thaliana (L.) Heynh. Columbia-0 plants on stilbene content and tolerance to the following abiotic stresses: low and high temperatures, salinity, drought, and ultraviolet irradiation (UV-B and UV-C). We used VaSTS1 and VaSTS7 genes from grapevine (Vitis amurensis Rupr.) expressed under the double cauliflower mosaic virus 35S (CaMV35S) promoter. This study firstly demonstrated that overexpression of the VaSTS1 and VaSTS7 genes in A. thaliana plants considerably increased plant tolerance to UV-B and UV-C, while the tolerance to the low and high temperatures, salinity, and drought was not affected. We showed that the highest trans-piceid and trans-resveratrol total content was in ST1 A. thaliana plants that overexpressed the VaSTS1 gene in the range 8.28 - 22.66 µg g-1(f.m.). ST7 plants that overexpressed the VaSTS7 gene showed only trans-resveratrol at 0.02 - 0.08 µg g-1(f.m). Stilbene content and UV tolerance in transgenic A. thaliana plants correlated with STS transgene expression. STS expression, UV tolerance, and stilbene content was higher in VaSTS1 transgenic plants compared with that in VaSTS7 transgenic plants.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"111-117"},"PeriodicalIF":1.5,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43650971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Ning, T. Zhou, C. Jiang, WU H.M., J. Jiang, J. Chen, Y. El-Kassaby, M. Y
{"title":"Rapid and efficient leaf regeneration propagation system for Euonymus bungeanus","authors":"K. Ning, T. Zhou, C. Jiang, WU H.M., J. Jiang, J. Chen, Y. El-Kassaby, M. Y","doi":"10.32615/BP.2020.166","DOIUrl":"https://doi.org/10.32615/BP.2020.166","url":null,"abstract":"Rapid propagation of plants by tissue culture is of great significance for large-scale production, molecular genetics research, and breeding. Currently, a rapid and high-efficient tissue culture protocol for Euonymus bungeanus is needed. To develop a propagation system for this species, we established a new regeneration system from leaves. Callus formation was induced on Murashige and Skoog (MS) medium supplemented with 0.5 mg dm-3 6-benzylaminopurine (6-BA) and 0.5 mg dm-3 α-naphthalene acetic acid (NAA) and the induction rate almost reached 100 % under red radiation within 21 d. The medium for proliferation of adventitious buds comprised of MS medium with 1.0 mg dm-3 6-BA and 0.5 mg dm-3 NAA, and the induction rate within 20 d nearly reached 100 %. When, the adventitious buds were transferred to the rooting medium containing 1/2MS, 2.0 mg dm-3 indole-3-butyric acid (IBA), and 0.05 mg dm-3 NAA, adventitious root formation was achieved within 20 d. Collectively, the rapid and high-efficient regeneration system from E. bungeanus leaves was established, providing useful references for effective mass propagation and it could serve as an enabling technology for future genetic engineering.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"118-125"},"PeriodicalIF":1.5,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47491524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of water shortage on apple seedling growth under different radiation composition","authors":"F. A. Hamann, A. Fiebig, G. Noga","doi":"10.32615/BP.2020.086","DOIUrl":"https://doi.org/10.32615/BP.2020.086","url":null,"abstract":"Abiotic stresses strongly impair plant development and might impose detrimental effects particularly on seedlings. Irradiance and water deficit are relevant factors, which affect performance of young plants under controlled conditions. In our study, we investigated the influence of water shortage combined with different radiation sources - light emitting diodes (LED) and compact fluorescence lamps (CFL) - on physiological and biochemical parameters of young apple plants. Stress responses were assessed by fluorescence-based indices, while relative water, chlorophyll (Chl), and proline content served as reference parameters. The watering regime had a higher impact on biochemical indicators than the radiation sources. Lower Chl content was determined in plants grown under LED both in control and in water deficit plants. Nitrogen balance index and nitrogen balance index with red radiation excitation showed similar patterns regarding leaf Chl results in relation to the radiation source, being higher under CFL. In contrast, the flavonol index was higher in plants cultivated under LED. Stomatal conductance and maximal photochemical efficiency emphasised a radiation quality effect with higher values for CFL. In conclusion, fluorescence indices related to nitrogen status and flavonol content are promising parameters to sense physiological impairments under the given conditions. However, discrepancies compared to previous studies might be related to the different plant species, the nature of dehydration, and the measuring conditions.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"88-99"},"PeriodicalIF":1.5,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42704325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Melita, A. Kaldis, M. Berbati, C. Reppa, M. Holeva, M. Lapidot, D. Gelbart, P. Otten, A. Voloudakis
{"title":"Topical application of double-stranded RNA molecules deriving from Tomato yellow leaf curl virus reduces cognate virus infection in tomato","authors":"O. Melita, A. Kaldis, M. Berbati, C. Reppa, M. Holeva, M. Lapidot, D. Gelbart, P. Otten, A. Voloudakis","doi":"10.32615/BP.2020.172","DOIUrl":"https://doi.org/10.32615/BP.2020.172","url":null,"abstract":"Tomato yellow leaf curl virus (TYLCV), a whitefly-transmitted single-stranded DNA (ssDNA) virus, causes the most important viral disease of tomato worldwide. TYLCV-mediated disease is mainly controlled via extensive insecticide sprays aiming at the whitefly vector. RNA-based vaccination was proven to be a non-transgenic approach leading to efficient plant virus control. In this work, double-stranded RNA (dsRNA) molecules deriving from sequences of the C4 and V2 genes of TYLCV-Mild were produced in vitro and topically applied onto tomato plants along with the virus (via agroinfiltration). DsC4 and dsV2 application reduced disease incidence to 23 and 46 %, respectively, while TYLCV positive control reached 64 %. Bioinformatics analysis of the virus-specific small interfering RNAs (vsiRNAs) from TYLCV-infected tomato revealed 'hot' and 'cold' spots in the TYLCV-Mild genome. Interestingly, the viral C-strand had twofold siRNA reads when compared to that of the V-strand. Overall, vsiRNAs of negative and positive polarity were almost equal (53.5 vs. 46.6 %); vsiRNAs of negative polarity prevailed at the V-strand. Stem-loop RT-PCR validated the presence of six vsiRNAs (hot or cold spots) in TYLCV-Mild-infected and dsRNA-treated tomato. The exogenously applied dsRNA was found to rapidly move systemically in tomato and was detected for 54 days post treatment (dpt). The applied dsRNA molecules were successfully processed by the Dicer-like proteins (DCLs) in tomato since small interfering RNAs (siRNAs) deriving from the dsRNA were detected for at least 54 dpt. This consists the first report of dsRNA-based vaccination applied against a monopartite geminivirus.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48842047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}