{"title":"Issue Information","authors":"","doi":"10.1111/shil.13334","DOIUrl":"https://doi.org/10.1111/shil.13334","url":null,"abstract":"","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48512641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information","authors":"","doi":"10.1111/ropr.12431","DOIUrl":"https://doi.org/10.1111/ropr.12431","url":null,"abstract":"","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":"98 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47739804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction","authors":"C. V. Miller, M. Pittman","doi":"10.1002/essoar.10504068.1","DOIUrl":"https://doi.org/10.1002/essoar.10504068.1","url":null,"abstract":"Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non‐avian avialans (i.e. non‐crown birds), particularly of their diet. The diet of non‐avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non‐avian theropods, and comment on their usefulness when applied to non‐avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark‐based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non‐avian avialan diet which remains very incomplete. The ancestral dietary condition in non‐avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non‐avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non‐avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":"37 1","pages":"2058 - 2112"},"PeriodicalIF":0.0,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90495690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Chabrerie, F. Massol, B. Facon, R. Thevenoux, M. Hess, R. Ulmer, J. Pantel, J. Braschi, L. Amsellem, S. Baltora-Rosset, A. Tasiemski, F. Grandjean, P. Gibert, Matthieu Chauvat, L. Affre, G. Thiébaut, F. Viard, E. Forey, L. Folcher, T. Boivin, E. Buisson, D. Richardson, D. Renault
{"title":"Biological Invasion Theories: Merging Perspectives from Population, Community and Ecosystem Scales","authors":"O. Chabrerie, F. Massol, B. Facon, R. Thevenoux, M. Hess, R. Ulmer, J. Pantel, J. Braschi, L. Amsellem, S. Baltora-Rosset, A. Tasiemski, F. Grandjean, P. Gibert, Matthieu Chauvat, L. Affre, G. Thiébaut, F. Viard, E. Forey, L. Folcher, T. Boivin, E. Buisson, D. Richardson, D. Renault","doi":"10.20944/preprints201910.0327.v1","DOIUrl":"https://doi.org/10.20944/preprints201910.0327.v1","url":null,"abstract":"Biological invasions have reached an unprecedented level and the number of introduced species is still increasing worldwide. Despite major advances in invasion science, the determinants of success of introduced species, the magnitude and dimensions of their impact, and the mechanisms sustaining successful invasions are still debated. Empirical studies show divergent impacts of non-native populations on ecosystems and contrasting effects of biotic and abiotic factors on the dynamics of non-native populations; this is hindering the emergence of a unified theory of biological invasions. We propose a synthesis that merges perspectives from population, community, and ecosystem levels. Along a timeline of ecosystem transformation driven by non-native species, from historical to human-modified ecosystems, we order invasion concepts and theories to clarify their chaining and relevance during each step of the invasion process. This temporal sorting of invasion concepts shows that each concept is relevant at a specific stage of the invasion. Concepts and empirical findings on non-native species may appear contradictory. However, we suggest that, when mapped onto an invasion timeline, they may be combined in a complementary way. An overall scheme is proposed to summarise the theoretical dynamics of ecosystems subjected to invasions. For any given case study, this framework provides a guide through the maze of theories and should help choose the appropriate concepts according to the stage of invasion.","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43995268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carla Gómez-Creutzberg, M. Lagisz, S. Nakagawa, E. Brockerhoff, J. Tylianakis
{"title":"Consistent trade‐offs in ecosystem services between land covers with different production intensities","authors":"Carla Gómez-Creutzberg, M. Lagisz, S. Nakagawa, E. Brockerhoff, J. Tylianakis","doi":"10.1101/621706","DOIUrl":"https://doi.org/10.1101/621706","url":null,"abstract":"Sustaining multiple ecosystem services across a landscape requires an understanding of how consistently services are shaped by different categories of land uses. Yet, this understanding is generally constrained by the availability of fine-resolution data for multiple services across large areas and the spatial variability of land-use effects on services. We systematically surveyed published literature for New Zealand (1970 – 2015) to quantify the supply of 17 services across 25 land covers (as a proxy for land use). We found a consistent trade-off in the services supplied by anthropogenic land covers with a high production intensity (e.g., cropping) versus those with extensive or no production. In contrast, forest cover was not associated with any distinct patterns of service supply. By drawing on existing research findings we reveal complementarity and redundancy (potentially influencing resilience) in service supply from different land covers. This can guide practitioners in shaping land systems that sustainably support human well-being.","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":"125 1","pages":"1989 - 2008"},"PeriodicalIF":0.0,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78202512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data and metadata dealing with prokaryote and viral abundances from a variety of ecosystems","authors":"S. Jacquet, Kaarle J. Parikka","doi":"10.5281/ZENODO.45498","DOIUrl":"https://doi.org/10.5281/ZENODO.45498","url":null,"abstract":"","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71081171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chromosome evolution in the Salmonidae (Pisces): an update.","authors":"R. Phillips, P. Ráb","doi":"10.1017/S1464793100005613","DOIUrl":"https://doi.org/10.1017/S1464793100005613","url":null,"abstract":"The karyotypes of salmonid fishes including taxa in the three subfamilies Coregoninae, Thymallinae and Salmoninae are described. This review is an update of the (Hartley, 1987) review of the chromosomes of salmonid fishes. As described in the previous review, the karyotypes of salmonid fishes fall into two main categories based on chromosome numbers: the type A karyotypes have diploid numbers close to 80 with approximately 100 chromosome arms (2n = 80, NF = 100), and the type B karyotypes have diploid numbers close to 60 with approximately 100 chromosome arms (2n = 60, NF = 100). In this paper we have proposed additional sub categories based on variation in the number of chromosome arms: the A' type with NF = 110-120, the A\" type with NF greater than 140, and the B' type with NF less than 80. Two modes of chromosome evolution are found in the salmonids: in the Coregoninae and the Salmoninae the chromosomes have evolved by centric fusions of the Robertsonian type decreasing chromosome numbers (2n) while retaining chromosome arm numbers (NF) close to that found in the hypothetical tetraploid ancestor so that most extant taxa have either type A or type B karyotypes. In the Thymallinae, the chromosomes have evolved by inversions so that chromosome arm numbers (NF) have increased but chromosome numbers (2n) close to the karyotype of the hypothetical tetraploid ancestor have been retained and all taxa have type A' karyotypes. Most of the taxa with type B karyotypes in the Coregoninae and Salmoninae are members of the genus Oncorhynchus, although at least one example of type B karyotypes is found in all of the other genera. These taxa either have an anadromous life history or are found in specialized lacustrine environments. Selection for increases or decreases in genetic recombination as proposed by Qumsiyeh, 1994 could have been involved in the evolution of chromosome number in salmonid fishes.","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":"27 1","pages":"1-25"},"PeriodicalIF":0.0,"publicationDate":"2007-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84858142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Lindström, E. Ranta, H. Kokko, P. Lundberg, V. Kaitala, V. Kaitala
{"title":"From arctic lemmings to adaptive dynamics: Charles Elton's legacy in population ecology.","authors":"J. Lindström, E. Ranta, H. Kokko, P. Lundberg, V. Kaitala, V. Kaitala","doi":"10.1017/S1464793100005637","DOIUrl":"https://doi.org/10.1017/S1464793100005637","url":null,"abstract":"We shall examine the impact of Charles S. Elton's 1924 article on periodic fluctuations in animal populations on the development of modern population ecology. We argue that his impact has been substantial and that during the past 75 years of research on multi-annual periodic fluctuations in numbers of voles, lemmings, hares, lynx and game animals he has contributed much to the contemporary understanding of the causes and consequences of population regulation. Elton was convinced that the cause of the regular fluctuations was climatic variation. To support this conclusion, he examined long-term population data then available. Despite his firm belief in a climatic cause of the self-repeating periodic dynamics which many species display, Elton was insightful and far-sighted enough to outline many of the other hypotheses since put forward as an explanation for the enigmatic long-term dynamics of some animal populations. An interesting, but largely neglected aspect in Elton's paper is that it ends with speculation regarding the evolutionary consequences of periodic population fluctuations. The modern understanding of these issues will also be scrutinised here. In population ecology, Elton's 1924 paper has spawned a whole industry of research on populations displaying multi-annual periodicity. Despite the efforts of numerous research teams and individuals focusing on the origins of multi-annual population cycles, and despite the early availability of different explanatory hypotheses, we are still lacking rigorous tests of some of these hypotheses and, consequently, a consensus of the causes of periodic fluctuations in animal populations. Although Elton would have been happy to see so much effort spent on cyclic populations, we also argue that it is unfortunate if this focus on a special case of population dynamics should distract our attention from more general problems in population and community dynamics.","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":"102 1","pages":"129-58"},"PeriodicalIF":0.0,"publicationDate":"2007-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80472305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John D Goss-Custard, Andrew D West, Michael G Yates, Richard W G Caldow, Richard A Stillman, Louise Bardsley, Juan Castilla, Macarena Castro, Volker Dierschke, Sarah E A Le V Dit Durell, Goetz Eichhorn, Bruno J Ens, Klaus-Michael Exo, P U Udayangani-Fernando, Peter N Ferns, Philip A R Hockey, Jennifer A Gill, Ian Johnstone, Bozena Kalejta-Summers, Jose A Masero, Francisco Moreira, Rajarathina Velu Nagarajan, Ian P F Owens, Cristian Pacheco, Alejandro Perez-Hurtado, Danny Rogers, Gregor Scheiffarth, Humphrey Sitters, William J Sutherland, Patrick Triplet, Dave H Worrall, Yuri Zharikov, Leo Zwarts, Richard A Pettifor
{"title":"Intake rates and the functional response in shorebirds (Charadriiformes) eating macro-invertebrates.","authors":"John D Goss-Custard, Andrew D West, Michael G Yates, Richard W G Caldow, Richard A Stillman, Louise Bardsley, Juan Castilla, Macarena Castro, Volker Dierschke, Sarah E A Le V Dit Durell, Goetz Eichhorn, Bruno J Ens, Klaus-Michael Exo, P U Udayangani-Fernando, Peter N Ferns, Philip A R Hockey, Jennifer A Gill, Ian Johnstone, Bozena Kalejta-Summers, Jose A Masero, Francisco Moreira, Rajarathina Velu Nagarajan, Ian P F Owens, Cristian Pacheco, Alejandro Perez-Hurtado, Danny Rogers, Gregor Scheiffarth, Humphrey Sitters, William J Sutherland, Patrick Triplet, Dave H Worrall, Yuri Zharikov, Leo Zwarts, Richard A Pettifor","doi":"10.1017/S1464793106007093","DOIUrl":"https://doi.org/10.1017/S1464793106007093","url":null,"abstract":"<p><p>As field determinations take much effort, it would be useful to be able to predict easily the coefficients describing the functional response of free-living predators, the function relating food intake rate to the abundance of food organisms in the environment. As a means easily to parameterise an individual-based model of shorebird Charadriiformes populations, we attempted this for shorebirds eating macro-invertebrates. Intake rate is measured as the ash-free dry mass (AFDM) per second of active foraging; i.e. excluding time spent on digestive pauses and other activities, such as preening. The present and previous studies show that the general shape of the functional response in shorebirds eating approximately the same size of prey across the full range of prey density is a decelerating rise to a plateau, thus approximating the Holling type II ('disc equation') formulation. But field studies confirmed that the asymptote was not set by handling time, as assumed by the disc equation, because only about half the foraging time was spent in successfully or unsuccessfully attacking and handling prey, the rest being devoted to searching.A review of 30 functional responses showed that intake rate in free-living shorebirds varied independently of prey density over a wide range, with the asymptote being reached at very low prey densities (<150/m-2). Accordingly, most of the many studies of shorebird intake rate have probably been conducted at or near the asymptote of the functional response, suggesting that equations that predict intake rate should also predict the asymptote.A multivariate analysis of 468 'spot' estimates of intake rates from 26 shorebirds identified ten variables, representing prey and shorebird characteristics, that accounted for 81% of the variance in logarithm-transformed intake rate. But four-variables accounted for almost as much (77.3%), these being bird size, prey size, whether the bird was an oystercatcher Haematopus ostralegus eating mussels Mytilus edulis, or breeding. The four variable equation under-predicted, on average, the observed 30 estimates of the asymptote by 11.6%, but this discrepancy was reduced to 0.2% when two suspect estimates from one early study in the 1960s were removed. The equation therefore predicted the observed asymptote very successfully in 93% of cases. We conclude that the asymptote can be reliably predicted from just four easily measured variables. Indeed, if the birds are not breeding and are not oystercatchers eating mussels, reliable predictions can be obtained using just two variables, bird and prey sizes. A multivariate analysis of 23 estimates of the half-asymptote constant suggested they were smaller when prey were small but greater when the birds were large, especially in oystercatchers. The resulting equation could be used to predict the half-asymptote constant, but its predictive power has yet to be tested. As well as predicting the asymptote of the functional response, the equations ","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":"81 4","pages":"501-29"},"PeriodicalIF":0.0,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1464793106007093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26161173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone.","authors":"John N Maina","doi":"10.1017/S1464793106007111","DOIUrl":"https://doi.org/10.1017/S1464793106007111","url":null,"abstract":"<p><p>Among the air-breathing vertebrates, the avian respiratory apparatus, the lung-air sac system, is the most structurally complex and functionally efficient. After intricate morphogenesis, elaborate pulmonary vascular and airway (bronchial) architectures are formed. The crosscurrent, countercurrent, and multicapillary serial arterialization systems represent outstanding operational designs. The arrangement between the conduits of air and blood allows the respiratory media to be transported optimally in adequate measures and rates and to be exposed to each other over an extensive respiratory surface while separated by an extremely thin blood-gas barrier. As a consequence, the diffusing capacity (conductance) of the avian lung for oxygen is remarkably efficient. The foremost adaptive refinements are: (1) rigidity of the lung which allows intense subdivision of the exchange tissue (parenchyma) leading to formation of very small terminal respiratory units and consequently a vast respiratory surface; (2) a thin blood-gas barrier enabled by confinement of the pneumocytes (especially the type II cells) and the connective tissue elements to the atria and infundibulae, i.e. away from the respiratory surface of the air capillaries; (3) physical separation (uncoupling) of the lung (the gas exchanger) from the air sacs (the mechanical ventilators), permitting continuous and unidirectional ventilation of the lung. Among others, these features have created an incredibly efficient gas exchanger that supports the highly aerobic lifestyles and great metabolic capacities characteristic of birds. Interestingly, despite remarkable morphological heterogeneity in the gas exchangers of extant vertebrates at maturity, the processes involved in their formation and development are very similar. Transformation of one lung type to another is clearly conceivable, especially at lower levels of specialization. The crocodilian (reptilian) multicameral lung type represents a Bauplan from which the respiratory organs of nonavian theropod dinosaurs and the lung-air sac system of birds appear to have evolved. However, many fundamental aspects of the evolution, development, and even the structure and function of the avian respiratory system still remain uncertain.</p>","PeriodicalId":8893,"journal":{"name":"Biological reviews of the Cambridge Philosophical Society","volume":"81 4","pages":"545-79"},"PeriodicalIF":0.0,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1464793106007111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26306843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}