{"title":"Severe dynein dysfunction in cholinergic neurons exacerbates ALS-like phenotypes in a new mouse model","authors":"","doi":"10.1016/j.bbadis.2024.167540","DOIUrl":"10.1016/j.bbadis.2024.167540","url":null,"abstract":"<div><div>Cytoplasmic dynein 1, a motor protein essential for retrograde axonal transport, is increasingly implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). In this study, we developed a novel mouse model that combines the <em>Legs at odd angles</em> (<em>Loa</em>, F580Y) point mutation in the dynein heavy chain with a cholinergic neuron-specific knockout of the dynein heavy chain. This model, for the first time, allows us to investigate the impact of <em>Loa</em> allele exclusivity in these neurons into adulthood. Our findings reveal that this selective increase in dynein dysfunction exacerbated the phenotypes observed in heterozygous <em>Loa</em> mice including pre-wean survival, reduced body weight and grip strength. Additionally, it induced ALS-like pathology in neuromuscular junctions (NMJs) not seen in heterozygous <em>Loa</em> mice. Notably, we also found a previously unobserved significant increase in neurons displaying TDP-43 puncta in both <em>Loa</em> mutants, suggesting early TDP-43 mislocalisation – a hallmark of ALS. The novel model also exhibited a concurrent rise in p62 puncta that did not co-localise with TDP-43, indicating broader impairments in autophagic clearance mechanisms. Overall, this new model underscores the fact that dynein impairment alone can induce ALS-like pathology and provides a valuable platform to further explore the role of dynein in ALS.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fatty acid β-oxidation in brain mitochondria: Insights from high-resolution respirometry in mouse, rat and Drosophila brain, ischemia and aging models","authors":"","doi":"10.1016/j.bbadis.2024.167544","DOIUrl":"10.1016/j.bbadis.2024.167544","url":null,"abstract":"<div><div>Glucose is the main energy source of the brain, yet recent studies demonstrate that fatty acid oxidation (FAO) plays a relevant role in the pathogenesis of central nervous system disorders. We evaluated FAO in brain mitochondria under physiological conditions, in the aging brain, and after stroke. Using high-resolution respirometry we compared medium-chain (MC, octanoylcarnitine) and long-chain (LC, palmitoylcarnitine) acylcarnitines as substrates of β-oxidation in the brain. The protocols developed avoid FAO overestimation by malate-linked anaplerotic activity in brain mitochondria. The capacity of FA oxidative phosphorylation (F-OXPHOS) with palmitoylcarnitine was up to 4 times higher than respiration with octanoylcarnitine. The optimal concentration of palmitoylcarnitine was 10 μM which corresponds to the total concentration of LC acylcarnitines in the brain. Maximal respiration with octanoylcarnitine was reached at 20 μM, however, this concentration exceeds MC acylcarnitine concentrations in the brain 15 times. F-OXPHOS capacity was highest in mouse cerebellum, intermediate in cortex, prefrontal cortex, and hypothalamus, and hardly detectable in hippocampus. F-OXPHOS capacity was 2-fold lower and concentrations of LC acylcarnitines were 2-fold higher in brain of aged rats. A similar trend was observed in the rat model of endothelin-1-induced stroke, but reduction of OXPHOS capacity was not limited to FAO. In conclusion, although FAO is not a dominant pathway in brain bioenergetics, it deserves specific attention in studies of brain metabolism.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PFKP inhibition protects against pathological cardiac hypertrophy by regulating protein synthesis","authors":"","doi":"10.1016/j.bbadis.2024.167542","DOIUrl":"10.1016/j.bbadis.2024.167542","url":null,"abstract":"<div><div>Metabolic reprogramming precedes most alterations during pathological cardiac hypertrophy and heart failure (HF). Recent studies have revealed that Phosphofructokinase, platelet (PFKP) has a wealth of metabolic and non-metabolic functions. In this study, we explored the role of PFKP in cardiac hypertrophic growth and HF. The expression level of PFKP was elevated both in pathological cardiac remodeling mouse model challenged by transverse aortic constriction (TAC) surgery and in the neonatal rat cardiomyocytes (NRCMs) stimulated by phenylephrine (PE). In global PFKP knockout (PFKP-KO) mice, cardiac hypertrophy was ameliorated under TAC surgery, while overexpression of PFKP by intravenous injection of adeno-associated virus 9 (AAV9) under the cardiac troponin T (cTnT) promoter worsened myocardial hypertrophy and fibrosis. In NRCMs, small interfering RNA (SiRNA) knockdown or adenovirus (Adv) overexpression of PFKP was employed and the intervention of PFKP showed a similar phenotype. Mechanistically, immunoprecipitation combined with liquid chromatography-tandem mass spectrometry (IP-MS/MS) analysis was used to identify the interacting proteins of PFKP. Eukaryotic translation initiation factor 2 subunit beta (EIF2S2) was identified as the downstream target of PFKP. In the PE-stimulated NRCM hypertrophy model and mouse TAC model, knocking down EIF2S2 after PFKP overexpression reduced the synthesis of new proteins and alleviated the hypertrophy phenotype. Our findings illuminate that PFKP participates in pathological cardiac hypertrophy partly by regulating protein synthesis through EIF2S2, which provides a new clue for the involvement of metabolic intermediates in signal transduction.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic alterations in fibroblasts of patients presenting with the MPAN subtype of neurodegeneration with brain iron accumulation (NBIA)","authors":"","doi":"10.1016/j.bbadis.2024.167541","DOIUrl":"10.1016/j.bbadis.2024.167541","url":null,"abstract":"<div><div>Mutations in the following genes: <em>PANK2</em>, <em>PLA2G6</em>, <em>C19orf12</em>, <em>WDR45</em>, <em>CP</em>, <em>FA2H</em>, <em>ATP13A2</em>, <em>FTL</em>, <em>DCAF17</em>, and <em>CoASY</em> are associated with the development of different subtypes of inherited rare disease Neurodegeneration with Brain Iron Accumulation (NBIA). Additionally, recently described mutations in <em>FTH1</em>, <em>AP4M1</em>, <em>REPS1</em>, <em>SCP2</em>, <em>CRAT</em> and <em>GTPBP2</em> affecting iron and lipid metabolism also are thought to be involved in NBIA development. Four main subtypes, pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN), are responsible for up to 82 % of all NBIA cases. Here we studied fibroblasts from 11 patients with pathogenic mutations in <em>C19orf12</em>, and demonstrate various cellular aberrations. Differences between fibroblasts from healthy individuals and MPAN patients were potentiated when cells were grown under oxidative phosphorylation (OXPHOS) promoting condition suggesting an impaired metabolic flexibility. The extent of some of the cellular aberrations quantitatively correlated with disease severity, suggesting their involvement in the NBIA pathomechanism.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nuclear localization of APLF facilitates breast cancer metastasis","authors":"","doi":"10.1016/j.bbadis.2024.167537","DOIUrl":"10.1016/j.bbadis.2024.167537","url":null,"abstract":"<div><div>Most breast cancer deaths result from metastases. We previously reported that DNA repair factor and histone chaperone Aprataxin PNK-like Factor (APLF) is involved in EMT-associated metastasis of triple negative breast cancer (TNBC) cells. However, non-metastatic cells also expressed APLF, the implications of which in disease advancement remain uncertain. Here, we demonstrate that the metastatic prognosis of breast cancer cells may be determined by the cellular localization of APLF. Using TNBC patient samples and cell lines, we discovered that APLF was localized in the nucleus and cytoplasm, whereas other subtypes of breast cancer had cytosolic or perinuclear localization. To investigate metastatic properties in vitro and in vivo, we modeled APLF differential localization by stably producing APLF-tagged nuclear localization signal (NLS) in the luminal subtype MCF7 cells in the absence of putative APLF NLS. Nuclear APLF in non-metastatic MCF7 cells demonstrated pronounced migration, invasion and metastatic potential. We obtained the mechanistic insight from molecular studies that PARP1 could facilitate the transport of APLF from the cytosol to the nucleus, assisting in the metastasis of TNBC cells linked with EMT. Inhibition of PARP1 enzymatic activity with olaparib abrogated the nuclear expression of APLF with loss in expression of genes associated with EMT. Thus, our findings reveal that cellular localization of APLF may predict the risk of breast cancer to metastasize and hence could be exploited to determine the disease progression. We anticipate that the inhibition of cytosolic PARP1-APLF interaction may potentially aid in the prevention of breast cancer metastasis in TNBC patients.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transglutaminase 2 promotes epithelial-to-mesenchymal transition by regulating the expression of matrix metalloproteinase 7 in colorectal cancer cells via the MEK/ERK signaling pathway","authors":"","doi":"10.1016/j.bbadis.2024.167538","DOIUrl":"10.1016/j.bbadis.2024.167538","url":null,"abstract":"<div><div>Tissue transglutaminase 2 (TGM2) and matrix metalloproteinase 7 (MMP7) are suggested to be involved in cancer development and progression, however, their specific role in colon cancer remains elusive. The present study investigated whether TGM2 and MMP7 influence epithelial-mesenchymal-transition (EMT) processes of colon cancer cells.</div><div>TGM2 was either overexpressed or knocked down in SW480 and HCT-116 cells, and MMP7 expression and activity analyzed. Conversely, MMP7 was silenced and its correlation with TGM2 expression and activity examined. Co-immunoprecipitation served to evaluate TGM2-MMP7-interaction. TGM2 and MMP7 expression were correlated with invasion, migration, EMT marker expression (E-cadherin, N-cadherin, Slug, Snail), and ERK/MEK signaling.</div><div>TGM2 overexpression enhanced MMP7 expression and activity, promoted cell invasion, migration and EMT, characterized by increased N-cadherin and Snail/Slug expression. TGM2 knockdown resulted in the opposite effects. Knocking down MMP7 was associated with reduced TGM2 protein expression, cell invasion and migration. Down-regulation of MMP7 diminished ERK/MEK signaling, whereas its up-regulation activated this pathway. The ERK-inhibitor GDC-0994 blocked phosphorylation of MEK/ERK and suppressed TGM2 and MMP7.</div><div>TGM2 communicates with MMP7 in colon cancer cells forces cell migration and invasion by the MEK/ERK signaling pathway and triggers EMT. Inhibiting TGM2 could thus offer new therapeutic options to treat patients with colon cancer, particularly to prevent metastatic progression.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maternal heart exhibits metabolic and redox adaptations post-uncomplicated pregnancy","authors":"","doi":"10.1016/j.bbadis.2024.167539","DOIUrl":"10.1016/j.bbadis.2024.167539","url":null,"abstract":"<div><div>Pregnancy may be a challenging period for the maternal systems and has been regarded as a stress test, as imperceptible/mild dysfunctions eventually present may be exacerbated during this period. The cardiovascular system is no exception, and several morphological and functional adaptations accompanying pregnancy have been described. However, long-term pregnancy-induced cardiac molecular alterations remain highly unexplored. The postpartum is marked by reverse remodeling of the pregnancy-induced cardiovascular adaptations, representing a possible critical period for assessing future maternal cardiovascular health. The current study explored the molecular and metabolic alterations in the cardiac tissue eight weeks after a physiological uncomplicated pregnancy. Female Sprague-Dawley rats were fed a chow diet through pregnancy, lactation, and weaning and compared to their non-pregnant counterparts. Eight weeks postpartum, increased levels of the phosphorylated form of AMPKα (Thr172) and its ratio to total AMPKα indicated possible alterations in cardiac metabolic flexibility, accompanied by increased <em>Ppar</em>α and <em>Hif</em>1α transcripts levels. Additionally, postpartum hearts exhibited higher mitochondrial ATP and NADH levels without major changes in mitochondrial respiratory function. Elevated Nrf2 levels in the cardiac tissue suggested potential implications for cardiac redox balance, further supported by increased levels or activity of proteins directly regulated by Nrf2. The findings herein reported suggest that at eight weeks postpartum, molecular alterations induced by pregnancy, especially regarding redox balance, are still observed in the mothers' heart. These alterations present at late postpartum may open new avenues to understand the different risk for cardiovascular complications development after normal pregnancies.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"VEGFB promotes adipose tissue thermogenesis by inhibiting norepinephrine clearance in macrophages","authors":"","doi":"10.1016/j.bbadis.2024.167536","DOIUrl":"10.1016/j.bbadis.2024.167536","url":null,"abstract":"<div><div>Adipokines play key roles in adaptive thermogenesis of beige adipocytes, though its detailed regulatory mechanisms are not fully understood. In the present study, we identify a critical function of vascular endothelial growth factor B (VEGFB)/vascular endothelial growth factor receptor 1 (VEGFR1) signaling in improving thermogenesis in white adipose tissue (WAT). In mouse subcutaneous WAT (scWAT), thermogenesis activation leads to the up-regulation of VEGFB in adipocytes and its receptor VEGFR1 in macrophages. Ablation of adipocyte VEGFB results in deficiency in murine WAT browning. Meanwhile, supplementation of VEGFB promotes WAT thermogenesis, but this effect is blocked by knockout of macrophage VEGFR1. Mechanistic studies show that the VEGFB-activated VEGFR1 inhibits p38 MAPK signaling through its dissociation with receptor for activated C kinase 1, thereby preventing norepinephrine transporter (solute carrier family 6 member 2) and norepinephrine-degrative monoamine oxidase a mediated norepinephrine clearance in macrophages. Our findings demonstrate that VEGFB/VEGFR1 circuit contributes to the WAT thermogenesis.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinase library screening identifies IGF-1R as an oncogenic vulnerability in intrahepatic cholangiocarcinoma stem-like cells","authors":"","doi":"10.1016/j.bbadis.2024.167521","DOIUrl":"10.1016/j.bbadis.2024.167521","url":null,"abstract":"<div><h3>Background</h3><div>Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer of the peripheral bile ducts and is recognized by the abundance of cancer stem-like cells (CSCs) within the tumor mass. While CSC markers in iCCA are well-defined, the molecular vulnerabilities of this subpopulation remain elusive.</div></div><div><h3>Methods</h3><div>The 96-well, three dimensional (3D) tumorsphere culture was adapted from a well-established CSC model, validated for CSC markers through gene expression analysis. Kinase library screening was then conducted to reveal potential oncogenic vulnerable pathways. RNA interference was utilized to stably silence the candidate gene in three iCCA cell lines and its impact on iCCA cell proliferation and tumorsphere formation efficiency (TFE) was evaluated.</div></div><div><h3>Results</h3><div>Kinase inhibitor library screening identified the top 50 kinase inhibitors crucial for tumorsphere viability, with 11 inhibitors targeting the IGF-1R/PI3K/AKT axis. Further dose-dependent analysis of the top ‘hit’ inhibitors confirmed IGF-1R as the candidate molecule. Upon stably silencing of IGF-1R, all three iCCA cell lines exhibited decreased AKT activation, impeded proliferation and reduced TFE, indicating a decline in CSC subpopulations.</div></div><div><h3>Conclusions</h3><div>IGF-1R plays a critical role in maintaining iCCA-stem like cell populations.</div></div><div><h3>General significance</h3><div>Our data highlight the potential utility of IGF-1R as a prognostic marker of iCCA and a therapeutic target for eliminating its CSC subpopulation.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bulk integrated single-cell-spatial transcriptomics reveals the impact of preoperative chemotherapy on cancer-associated fibroblasts and tumor cells in colorectal cancer, and construction of related predictive models using machine learning","authors":"","doi":"10.1016/j.bbadis.2024.167535","DOIUrl":"10.1016/j.bbadis.2024.167535","url":null,"abstract":"<div><h3>Background</h3><div>Preoperative chemotherapy (PC) is an important component of Colorectal cancer (CRC) treatment, but its effects on the biological functions of fibroblasts and epithelial cells in CRC are unclear.</div></div><div><h3>Methods</h3><div>This study utilized bulk, single-cell, and spatial transcriptomic sequencing data from 22 independent cohorts of CRC. Through bioinformatics analysis and in vitro experiments, the research investigated the impact of PC on fibroblast and epithelial cells in CRC. Subpopulations associated with PC and CRC prognosis were identified, and a predictive model was constructed using machine learning.</div></div><div><h3>Results</h3><div>PC significantly attenuated the pathways related to tumor progression in fibroblasts and epithelial cells. NOTCH3 + Fibroblast (NOTCH3 + Fib), TNNT1 + Epithelial (TNNT1 + Epi), and HSPA1A + Epithelial (HSPA1A + Epi) subpopulations were identified in the adjacent spatial region and were associated with poor prognosis in CRC. PC effectively diminished the presence of these subpopulations, concurrently inhibiting pathway activity and intercellular crosstalk. A risk signature model, named the Preoperative Chemotherapy Risk Signature Model (PCRSM), was constructed using machine learning. PCRSM emerged as an independent prognostic indicator for CRC, impacting both overall survival (OS) and recurrence-free survival (RFS), surpassing the performance of 89 previously published CRC risk signatures. Additionally, patients with a high PCRSM risk score showed sensitivity to fluorouracil-based adjuvant chemotherapy (FOLFOX) but resistance to single chemotherapy drugs (such as Bevacizumab and Oxaliplatin). Furthermore, this study predicted that patients with high PCRSM were resistant to anti-PD1therapy.</div></div><div><h3>Conclusion</h3><div>In conclusion, this study identified three cell subpopulations (NOTCH3 + Fib, TNNT1 + Epi, and HSPA1A + Epi) associated with PC, which can be targeted to improve the prognosis of CRC patients. The PCRSM model shows promise in enhancing the survival and treatment of CRC patients.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}