Oumar Ba, Cheikh Amadou Bamba Dath, A. Traoré, A. S. Ndao
{"title":"Resonance Parameters, Autoionisation of 2S+1Lo Doubly Excited N5+ Ion States Associated with n=3 and 4, N6+ Threshold","authors":"Oumar Ba, Cheikh Amadou Bamba Dath, A. Traoré, A. S. Ndao","doi":"10.11648/J.NS.20200503.11","DOIUrl":"https://doi.org/10.11648/J.NS.20200503.11","url":null,"abstract":"The motivation of the diagonalization method is to take into consideration the coupling between closed and opened channels in term of perturbation theory and to neglect the indirect coupling as well but also the autoionisation states through the opened channels. This procedure leads to a relatively simple mathematical problem consisting of solving a system of linear algebraic equations instead of a system of coupled differential equations or integro-differential equations. Diagonalization method under LS coupling scheme for the states 1,3Po; 1,3Do; 1,3Fo; 1,3Go; 1,3Ho was performed. The partial widths for multi-channel autoionizing levels to sublevels of N6+ were carried out by neglecting the direct coupling between opened channels. The calculations of total and partial widths of the (nln'l') 1,3Lo (L=1, 2, 3, 4 and 5) multiple-decay-channel system N5+ were performed. From L=1 to 2, the (4l4l') 1,3Lo states located under n=3 and the (3lnl') 1,3Lo states follow the same rules. All the (4l4l') 1,3Go and (4l4l') 1,3Ho states located under n=3 observe the rule 1.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"50 1","pages":"27"},"PeriodicalIF":0.0,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81256830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Natural Radioactivity Concentration and Radiological Evaluation in Soil Samples Around Dangote Cement Factory Ibese, Ogun State, Nigeria","authors":"Olatunji Kehinde Olanipekun, B. Lateef","doi":"10.11648/j.ns.20200502.12","DOIUrl":"https://doi.org/10.11648/j.ns.20200502.12","url":null,"abstract":"Background: Natural-occurring radioactive materials (NORMs) provide significant sources of human exposure to ionizing radiation but in certain cases, anthropogenic activities, like mining, have produced wastes that contain radiation above background levels in the environment, a situation that is of great concern for radiation protection. Around Dangote cement factory both mining and production have been on-going for some years, therefore there is need to evaluate the extent of the possible risk of the radionuclides to the health of the population in this study area. Measurements of radioactivity concentrations were carried out around Dangote Cement Factory Ibese. Samples of surface soil were measured using gamma-ray spectroscopy Nal (TI) scintillation detector. Results: Measurements showed that activity concentrations ranged from 18.33+ 1.91 Bqkg-1 to 29.14±4.4.2 Bqkg-1, with an average of 23.40 Bqkg-1 for (238U - 226Ra), 10.93±5.43 Bqkg-1 to 21.52±2.16 Bqkg-1 with an average of 16.50Bqkg-1 for 232Th, and 291.78±15.50 Bqkg-1 to 338.60±3.922 Bqkg-1 with an average of 314.11 Bqkg-1 for 40K. Similarly, the absorbed dose ranged from 28.63nGy/h to 38.24nGy/h with an average of 33.14nGy/h. The calculated annual effective dose ranged from 0.035mSv/y to 0.047mSv/y with an average of 0.040mSv/y. Conclusions: The average value of Radioactivity concentrations obtained for 238U, 232Th and 40K are lower than the corresponding global values reported in UNSCEAR publication. The calculated absorbed dose and annual effective dose values are also less than the recommended safe levels.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"21 1","pages":"22"},"PeriodicalIF":0.0,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91117008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Radium Contents and Radon Exhalation Rates in Soil Samples in Menge District, Ethiopia","authors":"T. Abate, Demewoz Amtatie","doi":"10.11648/j.ns.20200502.11","DOIUrl":"https://doi.org/10.11648/j.ns.20200502.11","url":null,"abstract":"Radon has been recognized as one of the major contributor to the natural radiation and health hazards in the human dwellings, working places and mining areas. Even lung cancer is expected if it is present in enhanced levels beyond maximum permissible limit. We have studied radium contents and radon exhalation (both mass and surface) rates in Menge mining and non-mining areas of the Benishangul Gumuz region in Western Ethiopia using the sealed Can technique and LR-115 type II plastic nuclear track detectors. Fifteen soil samples were collected over the study area according to the fraction of the populations and mining and non-mining areas. It is found that the values of radium contents vary from 1.20 to 3.94 Bq.kg-1 with an average value 2.44 Bq.kg-1. It is also found that gold mining areas have had relatively higher radium contents as compared to the other samples which are collected from non-mining areas. And radon exhalation study is important for understanding the relative contribution of the material to the total radon concentration found inside the study area. The radon mass and surface exhalation rates for the studied samples had the mean values of 2.16×10-6 Bq.kg-1.d-1 and 1.14×10-4 Bq.m-2.d-1 respectively.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"237 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74694202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Dispersive Optical Model Analysis of the Protons Scattering by Titanium Element Nucleus and Its Natural Isotopes","authors":"Haiddar Al-Mustafa, A. Belal","doi":"10.11648/J.NS.20190404.12","DOIUrl":"https://doi.org/10.11648/J.NS.20190404.12","url":null,"abstract":"In this paper, a dispersive optical model analysis of the neutrons scattering by titanium element nucleus and its natural isotopes is applied to the construction of the complex single-particle mean field starting from Fermi energy value to the energy value 100 MeV and for constant input values of the parameters of this mean field and the varied input values of Hatree-Fock approximation parameters of the nonlocal potential. The results according to DOMACNIP program that has been designed for that purpose would contain: continuous energy variation of the depths of the real and imaginary parts of the mean field, which are connected by dispersion relations were compared with these resulting from global parameterization of the optical model potential. In addition to continuous energy variation of the real radius parameter of the Wood-Saxon approximation to the mean field potential with its Hatree-Fock approximation of the nonlocal potential. Consequently, our results for the continuous energy variations of the predicted (total, total reaction, elastic) cross sections within the energy range (1-100) MeV, and with calculation step of the pervious range whose magnitude (1 MeV), elastic differential cross section and polarization for selected energy and for selected center-of-mass scattering angle within the energy range (1-100) MeV showed the excellent agreement with available experimental data and better than these resulted from global parameterization of the optical model potential, and thus more reliable for calculation the cross sections of unknown interactions of elements nuclei and their isotopes such neutrons scattering by titanium element nucleus and its natural isotopes.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74910373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Dispersive Optical Model Analysis of the Alpha Particles Scattering by Titanium Element Nucleus and Its Natural Isotopes","authors":"Haiddar Al-Mustafa, A. Belal","doi":"10.11648/j.ns.20200501.12","DOIUrl":"https://doi.org/10.11648/j.ns.20200501.12","url":null,"abstract":"A dispersive optical model analysis of the alpha particles scattering by titanium element nucleus and its natural isotopes has been applied for a new scattering potential within the energy range (1-100) MeV which has contained the range of the Coulomb barrier, and for constant input values of the parameters of this potential. This potential is extent of the mean field potential and is called by (coulomb-nuclear) interference potential, that contains (spin-orbit) coulomb term. The results according to DOMACNIP program that has been designed for that purpose would contain: continuous energy variation of the depths of the real and imaginary parts of the mean field, which are connected by dispersion relations have been compared with these resulting from global parameterizations of the alpha particles scattering potential. In addition to continuous energy variation of the real radius parameter of the Wood-Saxon approximation to the mean field potential with its Hatree-Fock approximation of the nonlocal potential. Consequently, our results for the continuous energy variations of the predicted total reaction cross section within the energy range (1-100) MeV, and with calculation step of the pervious range whose magnitude (1 MeV), differential cross sections, Ratio of the differential elastic scattering cross section to Rutherford cross section and polarization resulted only from the Coulomb spin-orbit term that has been appeared characteristically for selected energy and for selected center-of-mass scattering angle within the energy range (1-100) MeV, showed the excellent agreement with available experimental data and better than these resulted from global parameterizations of the alpha particles scattering potential.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86980270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Dispersive Optical Model Analysis of the Neutrons Scattering by Titanium Element Nucleus and Its Natural Isotopes","authors":"Haiddar Al-Mustafa, A. Belal","doi":"10.11648/j.ns.20200501.11","DOIUrl":"https://doi.org/10.11648/j.ns.20200501.11","url":null,"abstract":"","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83091164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O.S. Ifayefunmi, V. Kupriyanov, O. Mirzeabasov, B. Synzynys
{"title":"Review of Distribution of Natural Radiation in Some Parts of Nigeria","authors":"O.S. Ifayefunmi, V. Kupriyanov, O. Mirzeabasov, B. Synzynys","doi":"10.11648/J.NS.20190404.13","DOIUrl":"https://doi.org/10.11648/J.NS.20190404.13","url":null,"abstract":"Activity concentrations of natural radioactivity of 40K, 238U, 226Ra, and 232Th were reviewed in connection with rock, soil, sediments, and water in the Northern and Southern parts of Nigeria to estimate the radiation dose acquire by the population. The activity concentrations of the various radionuclides from rock samples collected from different locations were generally higher than those of other environmental matrices. Comparative distribution maps of 40K, 238U, and 232Th show the distribution of activity concentration in the Northern and Western part of Nigeria. The activity concentrations 40K, 238U, and 232Th in rock ranges from 40 Bq kg-1 to 1203 Bq kg-1, 34 Bq kg-1 to 7220 Bq kg-1, and 8 Bq kg-1 to 1680 Bq kg-1 respectively. In soil it ranges from 98.7 Bq kg-1 to 1023.3 Bq kg-1, 15.6 Bq kg-1 to 55.3 Bq kg-1, and 5.2 Bq kg-1 to 195.5 Bq kg-1 respectively. In sediment it ranges 97 Bq kg-1 to 1023 Bq kg-1, 12 Bq kg-1 to 47.9 Bq kg-1, and 11.7 Bq kg-1 to 55.3 Bq kg-1. The concentration of 40K and 238U in granite rocks are higher than the recommended permissible value. All the water samples were found to contain acceptable levels of radionuclides with mean activity values of 3.98±0.26, 11.00±2.58, and 17.73±5.04 Bql-1 for 40K, 232Th, and 238U, respectively showing that the mean activity of 238U for all the samples is the highest when compared with those of 40K and 232Th. The mean absorbed dose rate for all the area is 0.123mSvyr-1, which is very low when compared to the recommended limit of 1mSvyr-1 for water.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79568733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Radionuclide Levels in Groundwater Around Transmission Company of Nigeria for Environmental Impact Assessment","authors":"A. Adegunwa, S. Awojide, O. Ore","doi":"10.11648/J.NS.20190404.15","DOIUrl":"https://doi.org/10.11648/J.NS.20190404.15","url":null,"abstract":"The activity concentrations of 40K, 238U and 232Th in groundwaters taken from areas surrounding Transmission Company of Nigeria, Osogbo, Nigeria were measured to highlight and ascertain possible radionuclide pollution. High-resolution gamma spectrometry (HPGe detector) was used to determine the activity concentration of these radionuclides and the results obtained were used to calculate human radiological risk by the inhabitants in the area. The activity concentrations of 40K in all the groundwater samples range from 53.48 ± 2.90 to 407.58 ± 20.94 Bq/L. The activity concentrations of 238U in the groundwaters range from BDL to 21.86 ± 3.05 Bq/L. The activity concentrations of the 232Th in the groundwaters range from 2.18 ± 0.14 to 11.76 ± 0.68 Bq/L. Of the three investigated radionuclides, 40K was observed to have the highest mean activity concentration. The radiological parameters indicated mean values of 15.25 nGy/hr as the absorbed dose rate, 0.13 mSv/yr as the annual effective dose, 0.10 Bq/kg as the internal hazard index, 0.08 Bq/L as the external hazard index, 110.02 µsvy-1 as the annual gonadal dose equivalent, 0.24 as the representative gamma index and 31.11 as the radium equivalent. These suggested that the groundwaters do not pose intrinsic radiological hazards as a result of their relatively lower values than the UNSCEAR permissible levels. As a result of this, the occurrence of any heath effect due to radiation is low. These measurements therefore represent baseline values of these radionuclides in the ground waters of the studying area and further monitoring of these groundwaters should be encouraged.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90685173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current Trends of Artificial Intelligence in Nanosciences Application","authors":"G. Dagnaw, Gubala Getu Endeshaw","doi":"10.11648/J.NS.20190404.14","DOIUrl":"https://doi.org/10.11648/J.NS.20190404.14","url":null,"abstract":"Nanotechnologies are being spoken of as the driving force behind a new industrial revolution. Both private and public-sector spending are constantly increasing. In recent years the industries like Automobile, Medical, Space, Communication, Space and Military have realized tremendous benefits originating from discoveries made in the fields of Nanotechnology, Robotics and Artificial Intelligence (NRAI).During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. Artificial intelligence (AI) and nanotechnology are two fields that are instrumental in realizing the goal of precision medicine tailoring the best treatment for each cancer patient. Recent conversion between these two fields is enabling better patient data acquisition and improved design of nonmaterial’s for precision cancer medicine. Diagnostic nonmaterial’s are used to assemble a patient-specific disease profile, which is then leveraged, through a set of therapeutic nanotechnologies, to improve the treatment outcome. However, high intratumor and interpatient heterogeneities make the rational design of diagnostic and therapeutic platforms, and analysis of their output, extremely difficult. Integration of AI approaches can bridge this gap, using pattern analysis and classification algorithms for improved diagnostic and therapeutic accuracy. Nanomedicine design also benefits from the application of AI, by optimizing material properties according to predicted interactions with the target drug, biological fluids, immune system, vasculature, and cell membranes, all affecting therapeutic efficacy. Here, fundamental concepts in AI are described and the contributions and promise of nanotechnology coupled with AI to the future of precision cancer medicine are reviewed. Nanoscale applications working alone and in concert with AI will begin to move from the laboratories of the world into the theatres of war. Just as AI systems are now being wholly integrated into military decision making processes such as allowing satellites to deter attacks autonomously, in complimentary fashion, nanotechnology is providing the fabric for military space development.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83699400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. T. Gning, Jean Kouhissoré Badiane, A. Diallo, Mamadou Diouldé Ba, I. Sakho
{"title":"Photoionization of Aluminum-Like P2+ and Magnesium-Like P3+ by the Screening Constant by Unit Nuclear Charge Method","authors":"M. T. Gning, Jean Kouhissoré Badiane, A. Diallo, Mamadou Diouldé Ba, I. Sakho","doi":"10.11648/J.NS.20190404.11","DOIUrl":"https://doi.org/10.11648/J.NS.20190404.11","url":null,"abstract":"In the present work, accurate high lying single photoionization resonance energies for Aluminium-like P2+ and magnesium-like P3+ are reported. Calculations are performed in the framework of the Screening Constant by Unit Nuclear Charge (SCUNC) formalism. The resonance energies and quantum defects obtained compared very well with experimental data of Hernandez et al., (2015) along with DARC, Dirac Atomic R-matrix Codes computations of Wang et al., (2016). Analysis of the present results is achieved in the framework of the standard quantum-defect theory and of the SCUNC-procedure based on the calculation of the effective charge. It is demonstrated that the SCUNC-method can be used to assist fruitfully experiments for identifying narrow resonance energies due to overlapping peaks. New precise data for Aluminium-like P2+ and magnesium-like P3+ ions are presented as useful guidelines for investigators focusing their challenge on the Photoionization of aluminum-like P2+ and magnesium-like P3+ heavy charged ions in connection with their application in laboratory, astrophysics, and plasma physics. In addition, our predicted data up to n = 30 may be of great importance for the atomic physics community in connection with the determination of accurate abundances for phosphorus in the solar photosphere, in solar twins, in the infrared spectrum of Messier 77 galaxy (NGC1068).","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74062066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}