Biochimica et biophysica acta. Proteins and proteomics最新文献

筛选
英文 中文
The regulation of RGLG2-VWA by Ca2+ ions Ca2+离子对RGLG2-VWA的调控
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-09-19 DOI: 10.1016/j.bbapap.2023.140966
MeiLing Zhang , JiaXiang Zhang , Yan Liang, ShiCheng Tian, ShuYang Xie, Tong Zhou, Qin Wang
{"title":"The regulation of RGLG2-VWA by Ca2+ ions","authors":"MeiLing Zhang ,&nbsp;JiaXiang Zhang ,&nbsp;Yan Liang,&nbsp;ShiCheng Tian,&nbsp;ShuYang Xie,&nbsp;Tong Zhou,&nbsp;Qin Wang","doi":"10.1016/j.bbapap.2023.140966","DOIUrl":"https://doi.org/10.1016/j.bbapap.2023.140966","url":null,"abstract":"<div><p><span>RGLG2, an E3 ubiquitin ligase in </span><span><em>Arabidopsis thaliana</em></span>, affects hormone signaling and participates in drought regulation. Here, we determined two crystal structures of RGLG2 VWA domain, representing two conformations, open and closed, respectively. The two structures reveal that Ca<sup>2+</sup><span> ions are allosteric regulators of RGLG2-VWA, which adopts open state when NCBS1(Novel Calcium ions Binding Site 1) binds Ca</span><sup>2+</sup> ions and switches to closed state after Ca<sup>2+</sup><span><span> ions are removed. This mechanism of allosteric regulation is identical to RGLG1-VWA, but distinct from </span>integrin α and β VWA domains. Therefore, our data provide a backdrop for understanding the role of the Ca</span><sup>2+</sup><span> ions in conformational change of VWA domain. In addition, we found that RGLG2</span><sup>closed</sup>, corresponding to low affinity, can bind pseudo-ligand, which has never been observed in other VWA domains.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140966"},"PeriodicalIF":3.2,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49888360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Importance of aspartate 4 in the Mg2+ dependent regulation of Leishmania major PAS domain-containing phosphoglycerate kinase 天冬氨酸4在含磷酸甘油酸激酶的利什曼原虫主要PAS结构域的Mg2+依赖性调节中的重要性
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-09-17 DOI: 10.1016/j.bbapap.2023.140964
Gaurab Chowdhury, Saroj Biswas, Yuthika Dholey, Puja Panja, Sumit Das, Subrata Adak
{"title":"Importance of aspartate 4 in the Mg2+ dependent regulation of Leishmania major PAS domain-containing phosphoglycerate kinase","authors":"Gaurab Chowdhury,&nbsp;Saroj Biswas,&nbsp;Yuthika Dholey,&nbsp;Puja Panja,&nbsp;Sumit Das,&nbsp;Subrata Adak","doi":"10.1016/j.bbapap.2023.140964","DOIUrl":"https://doi.org/10.1016/j.bbapap.2023.140964","url":null,"abstract":"<div><p><span><span>Magnesium is an important divalent cation for the regulation of </span>catalytic activity. Recently, we have described that the Mg</span><sup>2+</sup><span> binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from </span><span><em>Leishmania major</em></span><span> (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg</span><sup>2+</sup><span> ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg</span><sup>2+</sup> binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg<sup>2+</sup> binding. Mg<sup>2+</sup><span><span> ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and </span>isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg</span><sup>2+</sup><span> binding in the absence of both PGK's substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg</span><sup>2+</sup> dependent repressed state of the catalytic PGK domain at neutral pH.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140964"},"PeriodicalIF":3.2,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49786063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design engineering of a more thermostable Sulfurihydrogenibium yellowstonense carbonic anhydrase for potential application in carbon dioxide capture technologies 合理设计一种更耐热的硫氢黄石松碳酸酐酶,用于二氧化碳捕获技术的潜在应用。
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-09-15 DOI: 10.1016/j.bbapap.2023.140962
Shima Ghaedizadeh , Majid Zeinali , Bahareh Dabirmanesh , Behnam Rasekh , Khosrow Khajeh , Ali Mohammad Banaei-Moghaddam
{"title":"Rational design engineering of a more thermostable Sulfurihydrogenibium yellowstonense carbonic anhydrase for potential application in carbon dioxide capture technologies","authors":"Shima Ghaedizadeh ,&nbsp;Majid Zeinali ,&nbsp;Bahareh Dabirmanesh ,&nbsp;Behnam Rasekh ,&nbsp;Khosrow Khajeh ,&nbsp;Ali Mohammad Banaei-Moghaddam","doi":"10.1016/j.bbapap.2023.140962","DOIUrl":"10.1016/j.bbapap.2023.140962","url":null,"abstract":"<div><p><span>Implementing hyperthermostable carbonic anhydrases into CO</span><sub>2</sub> capture and storage technologies in order to increase the rate of CO<sub>2</sub><span> absorption from the industrial flue gases<span> is of great importance from technical and economical points of view. The present study employed a combination of in silico tools to further improve thermostability of a known thermostable carbonic anhydrase from </span></span><em>Sulfurihydrogenibium yellowstonense.</em><span><span> Experimental results showed that our rationally engineered K100G mutant not only retained the overall structure and catalytic efficiency<span> but also showed a 3 °C increase in the melting temperature and a two-fold improvement in the enzyme half-life at 85 °C. Based on the </span></span>molecular dynamics simulation results, rearrangement of salt bridges and hydrogen interactions network causes a reduction in local flexibility of the K100G variant. In conclusion, our study demonstrated that thermostability can be improved through imposing local structural rigidity by engineering a single-point mutation on the surface of the enzyme.</span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140962"},"PeriodicalIF":3.2,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10269191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzymatic and biophysical characterization of a novel modular cellulosomal GH5 endoglucanase multifunctional from the anaerobic gut fungus Piromyces finnis 一种新型模块化纤维素体GH5多功能内切葡聚糖酶的酶学和生物物理特性研究
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-09-09 DOI: 10.1016/j.bbapap.2023.140963
Viviane Brito Andrade , Geizecler Tomazetto , Dnane Vieira Almeida , Robson Tramontina , Fabio Marcio Squina , Wanius Garcia
{"title":"Enzymatic and biophysical characterization of a novel modular cellulosomal GH5 endoglucanase multifunctional from the anaerobic gut fungus Piromyces finnis","authors":"Viviane Brito Andrade ,&nbsp;Geizecler Tomazetto ,&nbsp;Dnane Vieira Almeida ,&nbsp;Robson Tramontina ,&nbsp;Fabio Marcio Squina ,&nbsp;Wanius Garcia","doi":"10.1016/j.bbapap.2023.140963","DOIUrl":"10.1016/j.bbapap.2023.140963","url":null,"abstract":"<div><p><span>Cellulases<span><span> from anaerobic fungi are enzymes less-studied biochemically and structurally than cellulases from bacteria and aerobic fungi. Currently, only thirteen GH5 cellulases from anaerobic fungi were biochemically characterized and two crystal structures were reported. In this context, here, we report the functional and biophysical characterization of a novel multi-modular cellulosomal GH5 </span>endoglucanase from the anaerobic gut fungus </span></span><span><em>Piromyces</em><em> finnis</em></span> (named here <em>Pf</em><span>GH5). Multiple sequences alignments indicate that </span><em>Pf</em><span><span>GH5 is composed of a GH5 catalytic domain and a </span>CBM1<span> carbohydrate-binding module connected through a CBM10 dockerin module. Our results showed that </span></span><em>Pf</em>GH5 is an endoglucanase from anaerobic fungus with a large spectrum of activity. <em>Pf</em><span><span>GH5 exhibited preference for hydrolysis<span> of oat β-glucan, followed by galactomannan, </span></span>carboxymethyl cellulose, mannan, lichenan and barley β-glucan, therefore displaying multi-functionality. For oat β-glucan, </span><em>Pf</em><span>GH5 reaches its optimum enzymatic activity at 40 °C and pH 5.5, with K</span><sub>m</sub><span><span> of 7.1 μM. Ion exchange chromatography analyzes revealed the production of </span>oligosaccharides with a wide degree of polymerization indicated that </span><em>Pf</em>GH5 has endoglucanase activity. The ability to bind and cleave different types of carbohydrates evidence the potential of <em>Pf</em>GH5 for use in biotechnology and provide a useful basis for future investigation and application of new anaerobic fungi enzymes.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140963"},"PeriodicalIF":3.2,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10617016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of the conformation, fibrillation, and fibril morphologies of human brain α-, β-, and γ-synuclein proteins by the disaccharide chemical chaperone trehalose 双糖化学伴侣海藻糖对人脑α-、β-和γ-突触核蛋白构象、纤颤和纤丝形态的调节
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-09-01 DOI: 10.1016/j.bbapap.2023.140932
Manish K. Jain , Rajiv Bhat
{"title":"Modulation of the conformation, fibrillation, and fibril morphologies of human brain α-, β-, and γ-synuclein proteins by the disaccharide chemical chaperone trehalose","authors":"Manish K. Jain ,&nbsp;Rajiv Bhat","doi":"10.1016/j.bbapap.2023.140932","DOIUrl":"10.1016/j.bbapap.2023.140932","url":null,"abstract":"<div><p><span>Human α-, β-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, β-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing </span>osmolytes<span><span> such as trehalose which has an exceptional stabilizing effect for </span>globular proteins<span><span>. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, β-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of β-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live </span>cell imaging<span> of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.</span></span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 5","pages":"Article 140932"},"PeriodicalIF":3.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9860112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Fe and Zn cofactor dilemma 铁和锌的辅因子困境
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-09-01 DOI: 10.1016/j.bbapap.2023.140931
Jiahua Chen, Logan A. Calderone, Luying Pan, Trent Quist, Maria-Eirini Pandelia
{"title":"The Fe and Zn cofactor dilemma","authors":"Jiahua Chen,&nbsp;Logan A. Calderone,&nbsp;Luying Pan,&nbsp;Trent Quist,&nbsp;Maria-Eirini Pandelia","doi":"10.1016/j.bbapap.2023.140931","DOIUrl":"10.1016/j.bbapap.2023.140931","url":null,"abstract":"<div><p>Fe and Zn ions<span><span> are essential enzymatic cofactors across all domains of life. Fe is an electron donor/acceptor in redox </span>enzymes<span><span>, while Zn is typically a structural element or catalytic component in hydrolases. Interestingly, the presence of Zn in </span>oxidoreductases and Fe in hydrolases challenge this apparent functional dichotomy. In hydrolases, Fe either substitutes for Zn or specifically catalyzes certain reactions. On the other hand, Zn can replace divalent Fe and substitute for more complex Fe assemblies, known as Fe-S clusters. Although many zinc-binding proteins interchangeably harbor Zn and Fe-S clusters, these cofactors are only sometimes functional proxies.</span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 5","pages":"Article 140931"},"PeriodicalIF":3.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10245849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The structural and functional consequences of melatonin and serotonin on human αB-crystallin and their dual role in the eye lens transparency 褪黑素和血清素对人α b -晶体蛋白的结构和功能影响及其在晶状体透明度中的双重作用
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-09-01 DOI: 10.1016/j.bbapap.2023.140928
Mona Nourazaran , Reza Yousefi , Faezeh Moosavi-Movahedi , Farhad Panahi , Jun Hong , Ali A. Moosavi-Movahedi
{"title":"The structural and functional consequences of melatonin and serotonin on human αB-crystallin and their dual role in the eye lens transparency","authors":"Mona Nourazaran ,&nbsp;Reza Yousefi ,&nbsp;Faezeh Moosavi-Movahedi ,&nbsp;Farhad Panahi ,&nbsp;Jun Hong ,&nbsp;Ali A. Moosavi-Movahedi","doi":"10.1016/j.bbapap.2023.140928","DOIUrl":"10.1016/j.bbapap.2023.140928","url":null,"abstract":"<div><p><span>Crystallins are the major soluble lens proteins, and α-crystallin, the most important protective protein of the eye lens, has two subunits (αA and αB) with chaperone activity. αB-crystallin (αB-Cry) with a relatively wide tissue distribution has an innate ability to interact effectively with the misfolded proteins, preventing their aggregation. </span>Melatonin<span> and serotonin have also been identified in relatively high concentrations in the lenticular tissues. This study investigated the effect of these naturally occurring compounds and medications on the structure, oligomerization<span><span><span><span>, aggregation, and chaperone-like activity of human αB-Cry. Various spectroscopic methods, </span>dynamic light scattering (DLS), </span>differential scanning calorimetry<span> (DSC), and molecular docking have been used for this purpose. Based on our results, melatonin indicates an inhibitory effect on the aggregation of human αB-Cry without altering its chaperone-like activity. However, serotonin decreases αB-Cry oligomeric size distribution by creating </span></span>hydrogen bonds, decreases its chaperone-like activity, and at high concentrations increases protein aggregation.</span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 5","pages":"Article 140928"},"PeriodicalIF":3.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9865575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Oligomeric state of the N-terminal domain of DnaT for replication restart in Escherichia coli 大肠杆菌中用于复制重启的DnaT n端结构域的寡聚状态
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-09-01 DOI: 10.1016/j.bbapap.2023.140929
Shogo Inoue , Yohei Ikeda , Saki Fujiyama , Tadashi Ueda , Yoshito Abe
{"title":"Oligomeric state of the N-terminal domain of DnaT for replication restart in Escherichia coli","authors":"Shogo Inoue ,&nbsp;Yohei Ikeda ,&nbsp;Saki Fujiyama ,&nbsp;Tadashi Ueda ,&nbsp;Yoshito Abe","doi":"10.1016/j.bbapap.2023.140929","DOIUrl":"10.1016/j.bbapap.2023.140929","url":null,"abstract":"<div><p><span>DNA replication stops when chemical or physical damage occurs to the DNA. Repairing genomic DNA and reloading the replication helicase are crucial steps for restarting DNA replication. The </span><em>Escherichia coli</em><span> primosome<span> is a complex of proteins and DNA responsible for reloading the replication helicase DnaB<span>. DnaT, a protein found in the primosome complex, contains two functional domains. The C-terminal domain (89–179) forms an oligomeric complex with single-stranded DNA. Although the N-terminal domain (1–88) forms an oligomer, the specific residues responsible for this oligomeric structure have not yet been identified.</span></span></span></p><p><span><span><span>In this study, we proposed that the N-terminal domain of DnaT has a dimeric antitoxin<span> structure based on its primary sequence. Based on the proposed model, we confirmed the site of oligomerization in the N-terminal domain of DnaT through site-directed mutagenesis. The </span></span>molecular masses and thermodynamic stabilities of the site-directed mutants located at the dimer interface, namely Phe42, Tyr43, Leu50, Leu53, and Leu54, were found to be lower than those of the wild-type. Moreover, we observed a decrease in the molecular masses of the V10S and F35S mutants compared to the wild-type DnaT. </span>NMR<span> analysis of the V10S mutant revealed that the secondary structure of the N-terminal domain of DnaT was consistent with the proposed model. Additionally, we have demonstrated that the stability of the oligomer formed by the N-terminal domain of DnaT is crucial for its function. Based on these findings, we propose that the DnaT oligomer plays a role in replication restart in </span></span><em>Escherichia coli</em>.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 5","pages":"Article 140929"},"PeriodicalIF":3.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9869273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni 澳大利亚海葵新型TRPV1抑制肽Tst2的结构和功能特征
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-08-26 DOI: 10.1016/j.bbapap.2023.140952
Khaled A. Elnahriry , Dorothy C.C. Wai , Lauren M. Ashwood , Muhammad Umair Naseem , Tibor G. Szanto , Shaodong Guo , Gyorgy Panyi , Peter J. Prentis , Raymond S. Norton
{"title":"Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni","authors":"Khaled A. Elnahriry ,&nbsp;Dorothy C.C. Wai ,&nbsp;Lauren M. Ashwood ,&nbsp;Muhammad Umair Naseem ,&nbsp;Tibor G. Szanto ,&nbsp;Shaodong Guo ,&nbsp;Gyorgy Panyi ,&nbsp;Peter J. Prentis ,&nbsp;Raymond S. Norton","doi":"10.1016/j.bbapap.2023.140952","DOIUrl":"10.1016/j.bbapap.2023.140952","url":null,"abstract":"<div><p>Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone <em>Telmatactis stephensoni</em> identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (Na<sub>V</sub>, TRPV1, K<sub>V</sub> and Ca<sub>V</sub>). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in <em>Escherichia coli</em>, enabling the production of both unlabelled and uniformly <sup>13</sup>C,<sup>15</sup>N–labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch–clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (Na<sub>V</sub>) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against <em>Drosophila melanogaster</em> flies. However, the recombinant peptide at 100 nM showed &gt;50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1872 1","pages":"Article 140952"},"PeriodicalIF":3.2,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10179986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of flavonoids on the destabilization of α-synuclein fibrils and their conversion to amorphous aggregate: A molecular dynamics simulation and experimental study 黄酮类化合物对α-突触核蛋白原纤维失稳及其转化为无定形聚集体的影响:分子动力学模拟和实验研究。
IF 3.2 4区 生物学
Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-08-25 DOI: 10.1016/j.bbapap.2023.140951
Ishrat Jahan, Aziz Ahmad, Shashank Deep
{"title":"Effect of flavonoids on the destabilization of α-synuclein fibrils and their conversion to amorphous aggregate: A molecular dynamics simulation and experimental study","authors":"Ishrat Jahan,&nbsp;Aziz Ahmad,&nbsp;Shashank Deep","doi":"10.1016/j.bbapap.2023.140951","DOIUrl":"10.1016/j.bbapap.2023.140951","url":null,"abstract":"<div><p><span><span>The second most prevalent neurodegenerative disease, Parkinson's disease (PD), is caused by the accumulation and deposition of fibrillar aggregates of the α-Syn into the Lewy bodies. To create a potent pharmacological candidate to destabilize the preformed α-Syn fibril, it is important to understand the precise molecular mechanism underlying the destabilization of the α-Syn fibril. Through molecular dynamics simulations and experiments, we have examined the molecular mechanisms causing the destabilization and suppression of a newly discovered α-Syn fibril with a Greek-key-like shape and an aggregation prone state (APS) of α-Syn in the presence and absence of various Flvs. According to MD simulation and experimental evidence, morin, </span>quercetin, and </span>myricetin<span> are the Flvs, most capable of destabilizing the fibrils and converting them into amorphous aggregates. Compared to galangin<span><span><span> and kaempferol<span>, they have more hydroxyl groups and form more </span></span>hydrogen bonds<span> with fibrils.The processes by which morin and myricetin prevent new fibril production from APS and destabilize the fibrils are different. According to linear interaction energy analysis, van der Waals interaction predominates with morin, and </span></span>electrostatic interaction dominates with myricetin. Our MD simulation and experimental findings provide mechanistic insights into how Flvs destabilize α-Syn fibrils and change their morphology, opening the door to developing structure-based drugs for treating Parkinson's disease.</span></span></p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 6","pages":"Article 140951"},"PeriodicalIF":3.2,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41189709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信