{"title":"Review on aviation intelligent self-healing anti-corrosion coating","authors":"Yajun Chen, Zehuan Sui, Juan Du","doi":"10.1108/acmm-08-2023-2888","DOIUrl":"https://doi.org/10.1108/acmm-08-2023-2888","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"40 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138581388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenyu Ma, Yupeng Zhang, Xuguang An, Jing Zhang, Qingquan Kong, Hui Wang, Weitang Yao, Qingyuan Wang
{"title":"Mechanical and corrosion properties of nano ZrC reinforced FeCrAl alloys","authors":"Zhenyu Ma, Yupeng Zhang, Xuguang An, Jing Zhang, Qingquan Kong, Hui Wang, Weitang Yao, Qingyuan Wang","doi":"10.1108/acmm-09-2023-2896","DOIUrl":"https://doi.org/10.1108/acmm-09-2023-2896","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>The purpose of this study is to investigate the effect of nano ZrC particles on the mechanical and electrochemical corrosion properties of FeCrAl alloys, providing a beneficial reference basis for the development of high-performance carbide reinforced FeCrAl alloys with good mechanical and corrosion properties in the future.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>Nano ZrC reinforced FeCrAl alloys were prepared by mechanical alloying and spark plasma sintering. Phases composition, tensile fractography, corrosion morphology and chemical composition of nano ZrC reinforced FeCrAl alloys were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Microhardness and tensile properties of nano ZrC reinforced FeCrAl alloys were investigated by mechanical testing machine and Vickers hardness tester. Electrochemical corrosion properties of nano ZrC reinforced FeCrAl alloys were investigated by electrochemical workstation in 3.5 wt.% NaCl solution.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The results showed that addition of nano ZrC can effectively improve the mechanical and corrosion properties. However, excessive nano ZrC could decrease the mechanical properties and reduce the corrosion resistance. In all the FeCrAl alloys, FeCrAl–0.6 wt.% ZrC alloy exhibits the optimum mechanical properties with an ultimate tensile strength, elongation and hardness of 990.7 MPa, 24.1% and 335.8 HV1, respectively, and FeCrAl–0.2 wt.% ZrC alloy has a lower corrosion potential (−0.179 V) and corrosion current density (2.099 µA/cm2) and larger pitting potential (0.497 V) than other FeCrAl–ZrC alloys, showing a better corrosion resistance.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>Adding proper nano ZrC particles can effectively improve the mechanical and corrosion properties, while the excessive nano ZrC is harmful to the mechanical and corrosion properties of FeCrAl alloys, which provides an instruction to develop high-performance FeCrAl cladding materials.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"22 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138567955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrosion and protection of friction stir welding of magnesium alloy","authors":"Ziru Zhou, Songlin Zheng, Jiahuan Chen, Ting Zhang, Zhen He, Yuxin Wang","doi":"10.1108/acmm-07-2023-2853","DOIUrl":"https://doi.org/10.1108/acmm-07-2023-2853","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>The high specific strength makes magnesium alloys have a wide range of applications in aerospace, military, automotive, marine and construction industries. However, its poor corrosion resistance and weldability have limited its development and application. Friction stir welding (FSW) can effectively avoid the defects of fusion welding. However, the microstructure, mechanical properties and corrosion behavior of FSW joints in magnesium alloys vary among different regions. The purpose of this paper is to review the corrosion of magnesium alloy FSW joints, and to summarize the protection technology of welded joints.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>The corrosion of magnesium alloy FSW joints includes electrochemical corrosion and stress corrosion. This paper summarizes corrosion protection techniques for magnesium alloys FSW joints, focusing on composition, microstructure changes and surface treatment methods.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>Currently, this research is mainly focused on enhancing the corrosion resistance of magnesium alloy FSW joints by changing compositions, structural modifications and surface coating technologies. Refinement of the grains can be achieved by adjusting welding process parameters, which in turn minimizes the effects of the second phase on the alloy’s corrosion resistance.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>This paper presents a comprehensive review on the corrosion and protection of magnesium alloys FSW joints, covering the latest research advancements and practical applications. It aims to equip researchers with a better insight into the field and inspire new studies on this topic.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"3 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138552483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New understanding on the critical factors determining stability of passive film on Fe-Cr alloy based on aberration-corrected TEM study","authors":"B. Zhang, X.X. Wei, X.L. Ma","doi":"10.1108/acmm-09-2023-2891","DOIUrl":"https://doi.org/10.1108/acmm-09-2023-2891","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>In recent years, using aberration-corrected transmission electron microscopy, the authors have achieved precisely detecting the structural evolution of passive film as well as its interface zone at atomic scale. The purpose of this paper aims to make a brief review to show the authors’ new understanding and perspective on the issue of critical factors determining stability of passive film of Fe-Cr alloy.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>The introduction of single crystal enabled the authors to obtain a distinct metal/passive film interface and better characterize the structure of the interface region. The authors use aberration-corrected TEM to conduct cross-sectional observation and directly capture the details across the entire film at a high spatial and energy resolution.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>Apart from the passive film itself, the interface zone, including metal/film (Me/F) interface and the adjacent metal side, is also the site which is attacked. Accordingly, the nature of the interface zone, such as microstructure, composition and atomic configuration, is one of the critical factors determining the stability of passive film.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>Deciphering the critical factors determining the stability of passive film is of great significance and has been a fundamental issue in corrosion science. Great attention has been paid to the nature of the passive film itself. In contrast, the possible role of the interface between the passive film and the metal is rarely taken into account. Based on the advanced analytical tool with high spatial resolution, the authors have specified the significant role of interface structures on the macro-scale stability of passive film.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"106 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138547216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hairui Jiang, Jianjun Guan, Yan Zhao, Yanhong Yang, Jinglong Qu
{"title":"Research on the corrosion resistance and the passive film growth of Ni-based superalloy surface treated by ultrasonic impact","authors":"Hairui Jiang, Jianjun Guan, Yan Zhao, Yanhong Yang, Jinglong Qu","doi":"10.1108/acmm-09-2023-2899","DOIUrl":"https://doi.org/10.1108/acmm-09-2023-2899","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>The purpose of this study is to investigate the corrosion resistance of superalloys subjected to ultrasonic impact treatment (UIT). The passive film growth on the superalloys’ surface is analyzed to illustrate the corrosion mechanism.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>Electrochemical tests were used to investigated the corrosion resistance of GH4738 superalloys with different UIT densities. The microstructure was compared before and after the corrosion tests. The passive film characterization was described by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) tests.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The compressive residual stress and corrosion resistance of the specimens significantly increased after UIT. The order of corrosion resistance is related to the UIT densities, i.e. 1.96 s/mm<sup>2</sup> > 1.71 s/mm<sup>2</sup> > 0.98 s/mm<sup>2</sup> > as-cast. The predominant constituents of the passive films are TiO<sub>2</sub>, Cr<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub> and NiO. The passive film on the specimen with 1.96 s/mm<sup>2</sup> UIT density has the highest volume fraction of Cr<sub>2</sub>O<sub>3</sub> and MoO<sub>3</sub>, which is the main reason for its superior corrosion resistance.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>This study provides quantitative corrosion data for GH4738 superalloys treated by ultrasonic impact. The corrosion mechanism is explained by the passive film’s characterization.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the scale-forming mechanism of magnesium phosphate by polyepoxysuccinic acid based on solution conductivity method","authors":"Huihong Feng, Jianxiang Zhao, Jiarui Hou, Huixia Feng","doi":"10.1108/acmm-07-2023-2851","DOIUrl":"https://doi.org/10.1108/acmm-07-2023-2851","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>This study aims to investigate the influence of polyepoxysuccinic acid sodium (PESA), a green antiscalant, on the nucleation, crystallization and precipitation of magnesium phosphate.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>The conductivity method was used to investigate the maximum relative supersaturation of magnesium phosphate across various PESA dosages. Subsequently, a magnesium phosphate scale was prepared using the static scale inhibition method (GB/T16632-1996) and then analyzed via scanning electron microscopy.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The findings showed that PESA extends the induction period of magnesium phosphate crystallization, reduces crystal growth rate and elevates the solution’s relative supersaturation. Notably, PESA exerts a low dosage effect on inhibition of the magnesium phosphate scale, with the optimal dosage identified at 10 mL. Scanning electron microscopy revealed that PESA dispenses a dispersing effect on the magnesium phosphate scale, generating numerous concave, convex and deeper pores on the scale particles’ surface, and thereby significantly enhancing the surface area, especially when using an antiscalant with variable dosages.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>This study sheds new light on the impact of PESA, a green antiscalant, on the crystallization and precipitation of magnesium phosphate, thus paving the way for the development of enhanced and eco-friendly scale inhibition strategies in future applications.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"24 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hot corrosion behavior of hot isostatic pressing treated TiC/GTD222 composite fabricated by selective laser melting","authors":"Yuting Lv, Yaojie Liu, Rui Wang, Hongyao Yu, Zhongnan Bi, Guohao Liu, Guangbao Sun","doi":"10.1108/acmm-08-2023-2870","DOIUrl":"https://doi.org/10.1108/acmm-08-2023-2870","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>This paper aims to design a novel TiC/GTD222 nickel-based high-temperature alloy with excellent hot corrosion resistance by incorporating appropriate amounts of C, Al and Ti elements into GTD222 alloy.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>The composite material was prepared using the selective laser melting (SLM) technology, followed by a hot isostatic pressing (HIP) treatment. Subsequently, the composite underwent a hot corrosion test in a 75% Na<sub>2</sub>SO<sub>4</sub> + 25% NaCl mixed salt environment at 900 °C.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The HIP-SLMed TiC/GTD222 composite exhibits a relatively low weight loss rate. First, the addition of alloying elements facilitates the formation of multiple protective oxide films rich in Al, Ti and Cr. These oxide films play a crucial role in enhancing the material’s resistance to hot corrosion. Second, the HIP treatment results in a reduction of grain size in the composite and an increased number of grain boundaries, which further promote the formation of protective films.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>The hot corrosion behavior of the TiC/GTD222 nickel-based composite material prepared through SLM and HIP processing has not been previously studied. This research provides a new approach for designing nickel-based superalloys with excellent hot corrosion resistance.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"63 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of hot corrosion behavior of Inconel 617 via machine learning","authors":"Amir Rezaei","doi":"10.1108/acmm-07-2023-2854","DOIUrl":"https://doi.org/10.1108/acmm-07-2023-2854","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>This paper aims to study the feasibility of using machine learning in hot corrosion prediction of Inconel 617 alloy.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>By examination of the experimental studies on hot corrosion of Inconel 617, a data set was built for machine learning models. Apart from the alloy composition, this paper included the condition of hot corrosion like time and temperature, and the composition of the saline medium as independent features, while the specific mass change is set as the target feature. In this paper, linear regression, random forest and XGBoost are used to predict the specific mass gain of Inconel 617.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>XGBoost yields the coefficient of determination (<em>R</em><sup>2</sup>) of 0.98, which was highest among models. Also, this model recorded the lowest value of mean absolute error (0.20). XGBoost had the best performance in predicting specific mass gain of the alloy in different times at temperature of 900°C. In sum, XGBoost shows highest accuracy in predicting specific mass gain for Inconel 617.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>Using machine learning to predict hot corrosion in Inconel 617 marks a substantial progress in this domain and holds promise for simplifying the development and evaluation of novel materials featuring enhanced hot corrosion resilience.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"88 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hailong Du, Zengyao Chen, Xiyan Wang, Yongliang Li, Renshu Yang, Zhiyong Liu, Aibing Jin, Xiaogang Li
{"title":"Development of a Cr-Ni-Mo alloyed stress corrosion-resistant anchor bolt steel","authors":"Hailong Du, Zengyao Chen, Xiyan Wang, Yongliang Li, Renshu Yang, Zhiyong Liu, Aibing Jin, Xiaogang Li","doi":"10.1108/acmm-08-2023-2873","DOIUrl":"https://doi.org/10.1108/acmm-08-2023-2873","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>The purpose of this paper is to develop new types of anchor bolt materials by adding corrosion-resistant elements for alloying and microstructure regulation.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>Three new anchor bolt materials were designed around the 1Ni system. The stress corrosion cracking resistance of the new materials was characterized by microstructure observation, electrochemical testing and slow strain rate tensile testing.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The strength of the new anchor bolt materials has been improved, and the stress corrosion sensitivity has been reduced. The addition of Nb makes the material exhibit excellent stress corrosion resistance under –1,200 mV conditions, but the expected results were not achieved when Nb and Sb were coupled.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>The new anchor bolt materials designed around 1Ni have excellent stress corrosion resistance, which is the development direction of future materials. Nb allows the material to retain its ability to extend in hydrogen-evolution environments.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"10 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of post-treated methods on corrosion resistance of MF-DC magnetron sputtering Al coating on TC4","authors":"Wensheng Li, Yiding Zhang, Yanwei Xu, Guangming Jiao, Dunwen Zuo, Wenting Lu, Quanshi Cheng, Jiaqi Yu, Yajun Chen","doi":"10.1108/acmm-07-2023-2857","DOIUrl":"https://doi.org/10.1108/acmm-07-2023-2857","url":null,"abstract":"Purpose This study aims to investigate the effect of post-treatment on anti-corrosion performance of Al coating on the surface of Ti-6Al-4V (TC4) fastener. Design/methodology/approach The Al coatings with different layer structures were prepared on TC4 by middle-frequency and direct-current combined magnetron sputtering. The cross-sectional morphology and surface roughness of coatings were characterized by scanning electron microscope and atomic force microscope. The corrosion resistance was evaluated by electrochemical method. The monolayer coating was post-treated by Alodine chemical conversion, Ar + bombardment and a combination of two methods above. Findings The results show that the interfaces in bilayer and trilayer coatings reduce the defects. Ar + bombardment reduces the corrosion current density, and Alodine chemical conversion leads to a higher pitting corrosion potential. The combined post-treatment has the highest polarization resistance. Originality/value The corrosion resistance of the Al coating is enhanced as the layer quantity increases. The combination of two post-treatments, Ar + bombardment and Alodine chemical conversion, could achieve an overall improvement in corrosion resistance of Al coating.","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"62 18","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}