Xiao-quan Qin, Bo Yao, Liang Jin, Xiang-zhou Zheng, Jie Ma, Marc F. Benedetti, Yongtao Li, Zong-ling Ren
{"title":"Characterizing Soil Dissolved Organic Matter in Typical Soils from China Using Fluorescence EEM–PARAFAC and UV–Visible Absorption","authors":"Xiao-quan Qin, Bo Yao, Liang Jin, Xiang-zhou Zheng, Jie Ma, Marc F. Benedetti, Yongtao Li, Zong-ling Ren","doi":"10.1007/s10498-019-09366-7","DOIUrl":"https://doi.org/10.1007/s10498-019-09366-7","url":null,"abstract":"<p>Dissolved organic matter (DOM) strongly participates in a variety of critical environmental and ecological processes and has a large impact on environmental quality. In this study, ultraviolet–visible absorbance spectroscopy and excitation–emission matrices of fluorescence spectroscopy in combination with parallel factor analysis (EEMs–PARAFAC) were applied to characterize a total of 92 DOM samples extracted from four typical soil types under three different land-use regimes across China. DOC concentrations ranged from 6.52?±?1.09 to 25.62?±?4.83?mg?L<sup>?1</sup> and were generally higher in red soil from Guangdong and Guangxi, especially in paddy soil. Three fluorescence components were identified in soil DOM by EEMs–PARAFAC, including high molecular weight UVA humic-like substances (C1), low molecular weight autochthonous humic-like substances (C2), and protein-like substances (C3). DOM from black soil in Heilongjiang, purple soil from Sichuan, and red soil from Zhejiang had more humic-like substances, whereas DOM from yellow soil in Guizhou and red soil from Guangdong and Guangxi had lower degree of aromaticity and higher proportion of microbial-derived protein-like components (C3). Moreover, DOM from paddy soil tended to be more of protein-like components (C3) than that from other land uses and DOM from dryland soil generally had more autochthonous humic-like substances (C2). Our results demonstrated that soil DOM characteristics both varied significantly by soil type and land use, and EEMs–PARAFAC could be a useful approach to characterize the components and sources of heterogeneous DOM in soils.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 1","pages":"71 - 88"},"PeriodicalIF":1.6,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09366-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4081216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rayees A. Shah, Hema Achyuthan, Satish J. Sangode, Aasif M. Lone, Mohammd Rafiq
{"title":"Mineral Magnetic and Geochemical Mapping of the Wular Lake Sediments, Kashmir Valley, NW Himalaya","authors":"Rayees A. Shah, Hema Achyuthan, Satish J. Sangode, Aasif M. Lone, Mohammd Rafiq","doi":"10.1007/s10498-019-09364-9","DOIUrl":"https://doi.org/10.1007/s10498-019-09364-9","url":null,"abstract":"<p>This study presents major element geochemistry, mineral magnetism and textural analysis of lake-bottom sediments collected from the Wular Lake located in the Kashmir Valley (northwest Himalaya). Connected to the Jhelum River, Wular Lake basin occupies?~?75% watershed area of the valley, covering?~?10,196?km<sup>2</sup>, and makes it the major depo-centre for Kashmir Valley. The sediments represent dominant silt fraction with TiO<sub>2</sub>, MgO, Fe<sub>2</sub>O<sub>3</sub> and MnO enrichment; and depletion of Na<sub>2</sub>O and P<sub>2</sub>O<sub>5</sub> with reference to upper continental crust. The average CIA (64.17%) reflects moderate chemical weathering of the catchment source rocks. The mineral magnetic mapping identified distinct domains of restricted/reducing and?well-ventilated/oxic conditions, illustrating spatial environmental variability within the lake-bottom environments. The geochemical and mineral magnetic mapping therefore provides a baseline reference for emerging climate and anthropogenic changes being experienced in the Kashmir Valley.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 1","pages":"31 - 52"},"PeriodicalIF":1.6,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09364-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4527520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geochemical Behavior of REE in Stream Water and Sediments in the Gold-Bearing Lom Basin, Cameroon: Implications for Provenance and Depositional Environment","authors":"Mumbfu Ernestine Mimba, Wirmvem Mengnjo Jude, Salomon César Nguemhe Fils, Nozomi Numanami, Melvin Tamnta Nforba, Takeshi Ohba, Festus Tongwa Aka, Cheo Emmanuel Suh","doi":"10.1007/s10498-019-09365-8","DOIUrl":"https://doi.org/10.1007/s10498-019-09365-8","url":null,"abstract":"<p>Stream water and associated bottom sediments were sampled within the Lom Basin, and their rare earth element (REE) concentrations have been used to decipher their provenance and environment of deposition. Stream waters in the lower Lom Basin have variable Post Archean Australian Shale-normalized REE concentrations (0.24–4978?ng/l), positive Ce anomalies (Ce/Ce* ranges from 1.08 to 8.03), a general positive Eu anomaly (Eu/Eu* varies from 0.9 to 15.2, average?=?4.9) and are slightly enriched in the light rare earth elements (LREE/HREE varies from 1.7 to 10.3). Similarly, the sediments are slightly depleted in heavy rare earth elements (HREE), have a predominant negative Ce anomaly, but show a ubiquitous positive Eu anomaly. The dissolved REE content is controlled by the near-neutral pH of the stream water and adsorption onto Fe and Mn oxyhydroxides. The variable LREE/HREE ratios and Eu anomalies observed in the sediments indicate that these sediments are sourced mainly from felsic rocks with little mafic input. Moreover, Ce anomalies and redox-sensitive trace elemental ratios of Ni/Co, V/(V?+?Ni), V/Cr, Cu/Zn and V/Ni revealed the sediments were deposited under oxic to reducing conditions. Variations in the concentration of REE in the stream water and sediment indicate that Fe and Mn oxyhydroxides are important sinks for the HREE. The newly generated data will guide future studies and environmental policy makers.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 1","pages":"53 - 70"},"PeriodicalIF":1.6,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09365-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4527523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Mahamat Nour, C. Vallet-Coulomb, C. Bouchez, P. Ginot, J. C. Doumnang, F. Sylvestre, P. Deschamps
{"title":"Geochemistry of the Lake Chad Tributaries Under Strongly Varying Hydro-climatic Conditions","authors":"A. Mahamat Nour, C. Vallet-Coulomb, C. Bouchez, P. Ginot, J. C. Doumnang, F. Sylvestre, P. Deschamps","doi":"10.1007/s10498-019-09363-w","DOIUrl":"https://doi.org/10.1007/s10498-019-09363-w","url":null,"abstract":"<p>The Lake Chad Basin (LCB) is one of the main endorheic basins in the world and has undergone large-level and surface variations during the last decades, particularly during the Sahelian dry period in the 1970s and the 1980s. The Chari–Logone River system covers 25% of the LCB but accounts for up to 82% of the Lake Chad water supply. The aim of this study is to investigate the dissolved phase transported by the Chari–Logone system, in order (1) to elucidate the origin and the behavior of major elements and the weathering processes in the watershed; (2) to estimate the total dissolved flux, its variability over the last decades and the driving factors. To do so, samples were collected monthly between January 2013 and November 2016 at three representative sites of the basin: in the Chari River in “Chagoua,” in the Logone River in “Ngueli” just before the confluence of both rivers, and at a downstream site in “Douguia,” 30?km after the confluence. Concentrations in major elements displayed significant seasonal variations in the Chari and Logone waters. At the seasonal time scale, the comparison between the concentrations of chemical elements and the flow rates showed a hysteresis loop. This hysteresis behavior corresponds to a variable contribution over time of two water bodies, fast surface water, and slow groundwater, the latter carrying higher concentrations and Ca/Na ratio, which may result from the contribution of pedogenic carbonate weathering to the dominant signature of silicate weathering. At the annual time scale,?similar average concentrations are observed in the Chari and Logone Rivers, despite contrasted annual runoff. In addition, an interannual stability of ionic concentrations was observed in the Chari–Logone River during the flood regime, both during the years covered by our monitoring (2013–2016) and during the pre-drought period (1969, 1972 and 1973). This situation corresponds to a chemostatic behavior, where the annual river discharge is the main factor controlling the interannual variation of chemical fluxes.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"26 1","pages":"3 - 29"},"PeriodicalIF":1.6,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09363-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5129556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheryl A. Kelley, Brad M. Bebout, Jeffrey P. Chanton, Angela M. Detweiler, Adrienne Frisbee, Brooke E. Nicholson, Jennifer Poole, Amanda Tazaz, Claire Winkler
{"title":"The Effect of Bacterial Sulfate Reduction Inhibition on the Production and Stable Isotopic Composition of Methane in Hypersaline Environments","authors":"Cheryl A. Kelley, Brad M. Bebout, Jeffrey P. Chanton, Angela M. Detweiler, Adrienne Frisbee, Brooke E. Nicholson, Jennifer Poole, Amanda Tazaz, Claire Winkler","doi":"10.1007/s10498-019-09362-x","DOIUrl":"https://doi.org/10.1007/s10498-019-09362-x","url":null,"abstract":"<p>The aim of this research was to investigate the competition between methanogens and sulfate-reducing bacteria in hypersaline environments. Samples of photosynthetic microbial mats, both soft mats (salinities of 55–126?ppt) and gypsum-hosted endoevaporite mats (salinities of 77–320?ppt), were obtained from hypersaline environments in California, USA, Mexico and Chile. Methane production was determined from the increase in headspace methane concentration within incubation vials containing mat samples. At the end of the incubation period, the δ<sup>13</sup>C values of produced methane were measured. Soft microbial mat vials containing molybdate, a specific inhibitor of bacterial sulfate reduction, exhibited dramatically higher methane production rates and higher (enriched in <sup>13</sup>C) methane δ<sup>13</sup>C values than the controls. This suggests that the inhibition of sulfate reduction allowed the methanogens at these sites to use the competitive substrates (H<sub>2</sub> and/or acetate) made available. Further, the higher δ<sup>13</sup>C values of the produced methane suggest that substrates (both competitive and non-competitive) were used to near completion. At the endoevaporite sites, which have much higher salinities than the soft mat sites, methane production was not significantly different and the methane δ<sup>13</sup>C values either remained the same or decreased (depleted in <sup>13</sup>C) with added molybdate. We suggest that substrate availability increased enough to allow for somewhat greater isotopic fractionation resulting in the lower methane δ<sup>13</sup>C values that were observed, but not enough to significantly increase measured production rates. Where no changes in either methane production rates or δ<sup>13</sup>C values occurred, we hypothesize that salinity itself was inhibiting sulfate reduction and thus controlling microbe populations and rates of metabolism.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 5-6","pages":"237 - 251"},"PeriodicalIF":1.6,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09362-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5064166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetics of Thiocyanate Formation by Reaction of Cyanide and Its Iron Complexes with Thiosulfate","authors":"Irina Kurashova, Alexey Kamyshny Jr.","doi":"10.1007/s10498-019-09361-y","DOIUrl":"https://doi.org/10.1007/s10498-019-09361-y","url":null,"abstract":"<p>Reactions between cyanide and compounds, which contain S–S bonds, in aqueous media result in formation of thiocyanate. In this work, we studied the kinetics of reactions of thiosulfate with free cyanide and its complexes under environmental conditions. Rates of reactions between cyanide species and thiosulfate decrease in the following order: CN<sup>?</sup>?>?HCN?>?[Fe(CN)<sub>6</sub>]<sup>3?</sup>?>?[Fe(CN)<sub>6</sub>]<sup>4?</sup>. However, at neutral and slightly acidic pH range, reaction of thiosulfate with iron-cyanide complexes outcompetes its reaction with free cyanide, which exists in equilibrium with complexed cyanide. At environmentally relevant conditions, the characteristic time of reaction between free cyanide and thiosulfate was found to be tens of thousands of years, while for iron-cyanide complexes it was found to be hundreds to millions of years. Examples of application of kinetic parameters for calculation of rates of cyanide consumption in industrial (coke oven wastewater) and non-polluted natural aquatic system (Delaware Great Marsh) are provided.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 5-6","pages":"219 - 236"},"PeriodicalIF":1.6,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09361-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4318713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Conrad, Kathrin Wuttig, Nils Jansen, Ilia Rodushkin, Johan Ingri
{"title":"The Stability of Fe-Isotope Signatures During Low Salinity Mixing in Subarctic Estuaries","authors":"Sarah Conrad, Kathrin Wuttig, Nils Jansen, Ilia Rodushkin, Johan Ingri","doi":"10.1007/s10498-019-09360-z","DOIUrl":"https://doi.org/10.1007/s10498-019-09360-z","url":null,"abstract":"<p>We have studied iron (Fe)-isotope signals in particles (>?0.22?μm) and the dissolved phase (<?0.22?μm) in two subarctic, boreal rivers, their estuaries and the adjacent sea in northern Sweden. Both rivers, the R?ne and the Kalix, are enriched in Fe and organic carbon (up to 29?μmol/L and up to 730?μmol/L, respectively). Observed changes in the particulate and dissolved phase during spring flood in May suggest different sources of Fe to the rivers during different seasons. While particles show a positive Fe-isotope signal during winter, during spring flood, the values are negative. Increased discharge due to snowmelt in the boreal region is most times accompanied by flushing of the organic-rich sub-surface layers. These upper podzol soil layers have been shown to be a source for Fe-organic carbon aggregates with a negative Fe-isotope signal. During winter, the rivers are mostly fed by deep groundwater, where Fe occurs as Fe(oxy)hydroxides, with a positive Fe-isotope signal. Flocculation during initial estuarine mixing does not change the Fe-isotope compositions of the two phases. Data indicate that the two groups of Fe aggregates flocculate diversely in the estuaries due to differences in their surface structure. Within the open sea, the particulate phase showed heavier δ<sup>56</sup>Fe values than in the estuaries. Our data indicate the flocculation of the negative Fe-isotope signal in a low salinity environment, due to changes in the ionic strength and further the increase of pH.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 5-6","pages":"195 - 218"},"PeriodicalIF":1.6,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09360-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4596527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Banajarani Panda, S. Chidambaram, K. Tirumalesh, N. Ganesh, C. Thivya, R. Thilagavathi, S. Venkatramanan, M. V. Prasanna, N. Devaraj, A. L. Ramanathan
{"title":"An Integrated Novel Approach to Understand the Process of Groundwater Recharge in Mountain and Riparian Zone Aquifer System of Tamil Nadu, India","authors":"Banajarani Panda, S. Chidambaram, K. Tirumalesh, N. Ganesh, C. Thivya, R. Thilagavathi, S. Venkatramanan, M. V. Prasanna, N. Devaraj, A. L. Ramanathan","doi":"10.1007/s10498-019-09357-8","DOIUrl":"https://doi.org/10.1007/s10498-019-09357-8","url":null,"abstract":"<p>The nature of groundwater recharge along the mountain front (MF) and riparian zone (RZ) was discerned by multiple tools involving rain/water level relationship, geophysical of subsurface, seasonal hydrochemistry and environmental isotopic signatures. The proposed study has been carried out in Courtallam Hills, the north-western part of Tirunelveli District, South India. The study area is a hilly terrain with narrow valleys endowed with steep slopes. The relationship between water-level fluctuation and precipitation were evaluated by observing daily water level in 8-h interval at three piezometer zones and regular rainfall data.?It was inferred that the RZ played a role in storage zone and gets recharged from mountain block (MB) and lateral flow. The seasonal geochemistry of the groundwater was studied to determine the sources of recharge in MF and RZ. Geostatistical treatment of factor analysis revealed that weathering was the dominant recharge process along the foothill. The geophysical studies reveal good quality of groundwater observed in the northern part along with low conductance and high resistivity. The increased level of groundwater conductivity and lower resistivity was noted in southern part of the study area due to the irrigation activities. The isotopic tracers range from ??2.5 to ??12.6‰ for δ<sup>18</sup>O and from ??91.2 to ??15.5‰ for δ<sup>2</sup>H. Moreover, the groundwater recharge was evaluated by source of rainfall moisture. High-altitude recharge from MB along the MF was clearly indicated by depleted isotopic content of the water samples. It was also supported by hydrogeochemical and statistical evidences, showing that rainfall over both MB and MF zones provided the recharge to foothill aquifers, while the RZ zone was mainly recharged by local precipitation with less contribution from regional flows.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 3-4","pages":"137 - 159"},"PeriodicalIF":1.6,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09357-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4778753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katja Klun, Ingrid Falnoga, Darja Mazej, Primož Šket, Jadran Faganeli
{"title":"Colloidal Organic Matter and Metal(loid)s in Coastal Waters (Gulf of Trieste, Northern Adriatic Sea)","authors":"Katja Klun, Ingrid Falnoga, Darja Mazej, Primož Šket, Jadran Faganeli","doi":"10.1007/s10498-019-09359-6","DOIUrl":"https://doi.org/10.1007/s10498-019-09359-6","url":null,"abstract":"<p>Large volumes of seawater were sampled in the Gulf of Trieste (northern Adriatic Sea) in order to study the interactions between colloidal organic matter (COM) and metal(loid)s (Me) in coastal waters. COM (>?5?kDa) was isolated by ultrafiltration and characterized using <sup>1</sup>H NMR spectroscopy and elemental C<sub>org</sub>. and N<sub>tot</sub>. analyses. COM in the gulf represents about one quarter of the dissolved organic carbon (DOC), and according to <sup>1</sup>H NMR analysis, it is composed of polysaccharides (30–45%), lipids (30–55%), proteins and carboxyl-rich alicyclic molecules (CRAM) (15–20%), and humics (<?1%). An accumulation of COM was observed in the late spring–early summer. The polysaccharide and lipid fractions increased up to twofold and the protein fraction decreased, reflected in a higher C<sub>org.</sub>/N<sub>tot</sub>. (28, molar) ratio. Higher concentrations of humics were observed due to local freshwater discharges in spring. COM from the Isonzo/So?a River differed from the marine COM exhibiting higher protein/CRAM and higher humic contents. COM from the Isonzo/So?a mouth at salinities 16–33 was compositionally similar to marine COM. Analysis of Me, performed by ICP-MS and CVAFS (Hg), showed that Hg (nearly 100%), Cu (20%), Cr (10%), and Se (10%) have the highest Me affinity to colloids. Similar to COM, Hg and Cu rapidly increased till summer due to their sequestration in accumulated COM (transfer to particulate phase). The observed Me/C<sub>org</sub>. ratios (Co, Cd, Hg?<?U, Cr, Ni, Mn?<?As, Zn, Cu, V?<?Se, Al, Fe) differ somewhat from those of the Irving–Williams series and can be explained by the composition of COM and variable background concentrations of studied Me in the northern Adriatic. Data from the salinity gradient in the metal-contaminated (especially Hg, Pb, Zn) Isonzo/So?a mouth showed flocculation of Al and Ba and desorption of V, Co, As, Se, Cs, U, and Hg, from the riverine particles with increasing ionic strength, while Fe, Mn, Cu, Cr, Ni, Zn, Cd, and Pb did not correlate with salinity.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 5-6","pages":"179 - 194"},"PeriodicalIF":1.6,"publicationDate":"2019-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09359-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4142167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yusmiana P. Rahayu, Tubagus Solihuddin, Mariska A. Kusumaningtyas, Restu Nur Afi Ati, Hadiwijaya L. Salim, Tim Rixen, Andreas A. Hutahaean
{"title":"The Sources of Organic Matter in Seagrass Sediments and Their Contribution to Carbon Stocks in the Spermonde Islands, Indonesia","authors":"Yusmiana P. Rahayu, Tubagus Solihuddin, Mariska A. Kusumaningtyas, Restu Nur Afi Ati, Hadiwijaya L. Salim, Tim Rixen, Andreas A. Hutahaean","doi":"10.1007/s10498-019-09358-7","DOIUrl":"https://doi.org/10.1007/s10498-019-09358-7","url":null,"abstract":"<p>Seagrass ecosystems have a potential role in climate change mitigation due to their ability to store high amount of carbon, particularly in the sediment. Studying the factors and mechanisms responsible for this storing capacity is essential to understand seagrass carbon sink function. Therefore, in this study, we identified the sources of organic carbon (C<sub>org</sub>) in seagrass sediments and the implication to C<sub>org</sub> stocks from four islands in the Spermonde Islands that located at different zones. We used the Bayesian stable isotope mixing model?to estimate the proportional contribution of different sources to sediment carbon. Seagrass meadows that located in adjacent to high anthropogenic activities (deforestation and aquacultures) with direct exposure to wave actions, such as on the Bauluang Island, accumulated organic carbon that derived from multiple sources, where phytoplankton contributed the highest, while on the other three islands that are relatively protected from wave actions, the highest contribution (~?75%) was from autochthonous production (seagrass-derived). Sediment C<sub>org</sub> stocks vary spatially, ranging from 11.9 to 32.1?Mg C ha<sup>?1</sup> (based on the obtained depth of 20–55?cm), or 40.5 to 83.5?Mg C ha<sup>?1</sup> if extrapolated to 1?m depth. The variability of sediment properties and C<sub>org</sub> stocks in this study is not solely determined by the geographical differences (inshore, nearshore and offshore islands), but also influenced by other local factors such as hydrodynamics that control the distribution of carbon sources, anthropogenic pressures and species composition. These factors should be taken into account when developing coastal management strategies, as efforts are being undertaken to include coastal ecosystems (including seagrass ecosystems) on the National Green House Gasses Reduction Strategy.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 3-4","pages":"161 - 178"},"PeriodicalIF":1.6,"publicationDate":"2019-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09358-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4838733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}