Suchi Biswas, Katharina Brinkert, Richard A. Catlow, Hsin-Yi Tiffany Chen, Joseph El-Kadi, Lucia Fagiolari, Wenbo Gao, Divyani Gupta, Justin S. J. Hargreaves, Marta C. Hatzell, Patrick L. Holland, Hideo Hosono, John T. S. Irvine, Mauricio Isaacs, Yoji Kobayashi, Luc Liedtke, Álvaro Lozano-Roche, Doug MacFarlane, Anna Mangini, Ian J. McPherson, Vineet Mishra, Pinkie Ntola, Shiho Otomo, Jonas C. Peters, Marcel Risch, Lorenzo Rizzato, Muhammed Safeer N. K., Sergii I. Shylin, Carsten Sievers, Vivek Sinha, Ifan E. L. Stephens, Tim Sudmeier, Feiyang Tian, Kylie A. Vincent, Qianru Wang, Yaolin Wang, Olivia Westhead, Lukman Yusuf and Giacomo Zuliani
{"title":"Electrocatalytic and photocatalytic routes to N2 activation: general discussion","authors":"Suchi Biswas, Katharina Brinkert, Richard A. Catlow, Hsin-Yi Tiffany Chen, Joseph El-Kadi, Lucia Fagiolari, Wenbo Gao, Divyani Gupta, Justin S. J. Hargreaves, Marta C. Hatzell, Patrick L. Holland, Hideo Hosono, John T. S. Irvine, Mauricio Isaacs, Yoji Kobayashi, Luc Liedtke, Álvaro Lozano-Roche, Doug MacFarlane, Anna Mangini, Ian J. McPherson, Vineet Mishra, Pinkie Ntola, Shiho Otomo, Jonas C. Peters, Marcel Risch, Lorenzo Rizzato, Muhammed Safeer N. K., Sergii I. Shylin, Carsten Sievers, Vivek Sinha, Ifan E. L. Stephens, Tim Sudmeier, Feiyang Tian, Kylie A. Vincent, Qianru Wang, Yaolin Wang, Olivia Westhead, Lukman Yusuf and Giacomo Zuliani","doi":"10.1039/D3FD90007J","DOIUrl":"https://doi.org/10.1039/D3FD90007J","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"243 ","pages":" 402-428"},"PeriodicalIF":3.4,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3675832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Richard A. Catlow, Joseph El-Kadi, Yeqin Guan, Justin S. J. Hargreaves, Patrick L. Holland, Hideo Hosono, Mauricio Isaacs, Manpreet Kaur, Yoji Kobayashi, Douglas R. MacFarlane, Vineet Mishra, Pinkie Ntola, Muhammed Safeer N. K., Sergii I. Shylin, Samira Siahrostami, Carsten Sievers, Deep Lata Singh, Laura Torrente Murciano, Romain Tort, Shik Chi Edman Tsang, Deniz Uner, Kylie A. Vincent, Qianru Wang and Lukman Yusuf
{"title":"Alternative routes to NH3 and its application: general discussion","authors":"C. Richard A. Catlow, Joseph El-Kadi, Yeqin Guan, Justin S. J. Hargreaves, Patrick L. Holland, Hideo Hosono, Mauricio Isaacs, Manpreet Kaur, Yoji Kobayashi, Douglas R. MacFarlane, Vineet Mishra, Pinkie Ntola, Muhammed Safeer N. K., Sergii I. Shylin, Samira Siahrostami, Carsten Sievers, Deep Lata Singh, Laura Torrente Murciano, Romain Tort, Shik Chi Edman Tsang, Deniz Uner, Kylie A. Vincent, Qianru Wang and Lukman Yusuf","doi":"10.1039/D3FD90009F","DOIUrl":"https://doi.org/10.1039/D3FD90009F","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"243 ","pages":" 549-556"},"PeriodicalIF":3.4,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3759153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew Ashley, Katharina Brinkert, C. Richard A. Catlow, Ping Chen, Fatima Abi Ghaida, Justin S. J. Hargreaves, Patrick L. Holland, Hideo Hosono, Mauricio Isaacs, Álvaro Lozano-Roche, Douglas MacFarlane, Pinkie Ntola, Jonas C. Peters, Christopher J. Pickett, Zhangjie Shi, Deep Lata Singh, Vivek Sinha, Deniz Uner, Kylie A. Vincent, Yaolin Wang, Qianru Wang and Xin Zeng
{"title":"Homogeneous N2 activation: general discussion","authors":"Andrew Ashley, Katharina Brinkert, C. Richard A. Catlow, Ping Chen, Fatima Abi Ghaida, Justin S. J. Hargreaves, Patrick L. Holland, Hideo Hosono, Mauricio Isaacs, Álvaro Lozano-Roche, Douglas MacFarlane, Pinkie Ntola, Jonas C. Peters, Christopher J. Pickett, Zhangjie Shi, Deep Lata Singh, Vivek Sinha, Deniz Uner, Kylie A. Vincent, Yaolin Wang, Qianru Wang and Xin Zeng","doi":"10.1039/D3FD90008H","DOIUrl":"https://doi.org/10.1039/D3FD90008H","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"243 ","pages":" 492-501"},"PeriodicalIF":3.4,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3675840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A statistical and machine learning approach to the study of astrochemistry","authors":"Johannes Heyl, Serena Viti and Gijs Vermariën","doi":"10.1039/D3FD00008G","DOIUrl":"https://doi.org/10.1039/D3FD00008G","url":null,"abstract":"<p >In order to obtain a good understanding of astrochemistry, it is crucial to better understand the key parameters that govern grain-surface chemistry. For many chemical networks, these crucial parameters are the binding energies of the species. However, there exists much disagreement regarding these values in the literature. In this work, a Bayesian inference approach is taken to estimate these values. It is found that this is difficult to do in the absence of enough data. The Massive Optimised Parameter Estimation and Data (MOPED) compression algorithm is then used to help determine which species should be prioritised for future detections in order to better constrain the values of binding energies. Finally, an interpretable machine learning approach is taken in order to better understand the non-linear relationship between binding energies and the final abundances of specific species of interest.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"245 ","pages":" 569-585"},"PeriodicalIF":3.4,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24849637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Michelle Bailey, Eric M. Crump, Joseph T. Hodges and Adam J. Fleisher
{"title":"Direct frequency comb spectroscopy of HCN to evaluate line lists","authors":"D. Michelle Bailey, Eric M. Crump, Joseph T. Hodges and Adam J. Fleisher","doi":"10.1039/D3FD00019B","DOIUrl":"https://doi.org/10.1039/D3FD00019B","url":null,"abstract":"<p >We report direct frequency comb spectroscopy of the 2<em>ν</em><small><sub>1</sub></small> band of H<small><sup>13</sup></small>CN in the short-wave infrared (<em>λ</em> = 1.56 μm) towards experimental validation of molecular line lists that support observatories like JWST. The laboratory measurements aim to test spectral reference data generated from an experimentally accurate potential energy surface (PES) and an <em>ab initio</em> dipole moment surface (DMS) calculated from quantum chemistry theory. Benchmarking theory with experiment will improve confidence in new astrophysics and astrochemistry inferred from spectroscopic observations of HCN and HNC. Here we describe our instrumentation and initial results using a cross-dispersed spectrometer with a virtually imaged phased array (VIPA).</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"245 ","pages":" 368-379"},"PeriodicalIF":3.4,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24849596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unified quantum theory of electrochemical kinetics by coupled ion–electron transfer†","authors":"Martin Z. Bazant","doi":"10.1039/D3FD00108C","DOIUrl":"10.1039/D3FD00108C","url":null,"abstract":"<p >A general theory of coupled ion–electron transfer (CIET) is presented, which unifies Marcus kinetics of electron transfer (ET) with Butler–Volmer kinetics of ion transfer (IT). In the limit of large reorganization energy, the theory predicts normal Marcus kinetics of “electron-coupled ion transfer” (ECIT). In the limit of large ion transfer energies, the theory predicts Butler–Volmer kinetics of “ion-coupled electron transfer” (ICET), where the charge transfer coefficient and exchange current are connected to microscopic properties of the electrode/electrolyte interface. In the ICET regime, the reductive and oxidative branches of Tafel’s law are predicted to hold over a wide range of overpotentials, bounded by the ion-transfer energies for oxidation and reduction, respectively. The probability distribution of transferring electron energies in CIET smoothly interpolates between a shifted Gaussian distribution for ECIT (as in the Gerischer–Marcus theory of ET) to an asymmetric, fat-tailed Meixner distribution centered at the Fermi level for ICET. The latter may help interpret asymmetric line shapes in x-ray photo-electron spectroscopy (XPS) and Auger electron spectroscopy (AES) for metal surfaces in terms of shake-up relaxation of the ionized atom and its image polaron by ICET. In the limit of large overpotentials, the theory predicts a transition to inverted Marcus ECIT, leading to a universal reaction-limited current for metal electrodes, dominated by barrierless quantum transitions. Uniformly valid, closed-form asymptotic approximations are derived that smoothly transition between the limiting rate expressions for ICET and ECIT for metal electrodes, using simple but accurate mathematical functions. The theory is applied to lithium intercalation in lithium iron phosphate (LFP) and found to provide a consistent description of the observed current dependence on overpotential, temperature and concentration. CIET theory thus provides a critical bridge between quantum electrochemistry and electrochemical engineering, which may find many other applications and extensions.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"246 ","pages":" 60-124"},"PeriodicalIF":3.4,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/fd/d3fd00108c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10173541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ionic current driven by a viscosity gradient","authors":"Benjamin Wiener and Derek Stein","doi":"10.1039/D3FD00053B","DOIUrl":"10.1039/D3FD00053B","url":null,"abstract":"<p >Gradients of voltage, pressure, temperature, and salinity can transport objects in micro- and nanofluidic systems by well-known mechanisms. This paper explores the dynamics of particles in a viscosity gradient with numerical simulations. The different stochastic rules used to integrate the random motion of Brownian particles affect the steady-state distribution of particles in a diffusivity gradient. Importantly, the simulations illuminate the important role that the boundary conditions play, disallowing a steady-state flux when the boundary conditions mimic those of a closed container, but allowing flux when they mimic electrodes. These results provide an interpretation for measurements of a steady ionic current flowing between electrodes separated by a nanofluidic channel with a liquid viscosity gradient.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"246 ","pages":" 47-59"},"PeriodicalIF":3.4,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thiago Colla, Igor M. Telles, Muhammad Arfan, Alexandre P. dos Santos and Yan Levin
{"title":"Spiers Memorial Lecture: Towards understanding of iontronic systems: electroosmotic flow of monovalent and divalent electrolyte through charged cylindrical nanopores","authors":"Thiago Colla, Igor M. Telles, Muhammad Arfan, Alexandre P. dos Santos and Yan Levin","doi":"10.1039/D3FD00062A","DOIUrl":"10.1039/D3FD00062A","url":null,"abstract":"<p >In many practical applications, ions are the primary charge carrier and must move through either semipermeable membranes or through pores, which mimic ion channels in biological systems. In analogy to electronic devices, the “iontronic” ones use electric fields to induce the charge motion. However, unlike the electrons that move through a conductor, motion of ions is usually associated with simultaneous solvent flow. A study of electroosmotic flow through narrow pores is an outstanding challenge that lies at the interface of non-equilibrium statistical mechanics and fluid dynamics. In this paper, we will review recent works that use dissipative particle dynamics simulations to tackle this difficult problem. We will also present a classical density functional theory (DFT) based on the hypernetted-chain approximation (HNC), which allows us to calculate the velocity of electroosmotic flows inside nanopores containing 1 : 1 or 2 : 1 electrolyte solution. The theoretical results will be compared with simulations. In simulations, the electrostatic interactions are treated using the recently introduced pseudo-1D Ewald summation method. The zeta potentials calculated from the location of the shear plane of a pure solvent are found to agree reasonably well with the Smoluchowski equation. However, the quantitative structure of the fluid velocity profiles deviates significantly from the predictions of the Smoluchowski equation in the case of charged pores with 2 : 1 electrolyte. For low to moderate surface charge densities, the DFT allows us to accurately calculate the electrostatic potential profiles and the zeta potentials inside the nanopores. For pores with 1 : 1 electrolyte, the agreement between theory and simulation is particularly good for large ions, for which steric effects dominate over the ionic electrostatic correlations. The electroosmotic flow is found to depend very strongly on the ionic radii. In the case of pores containing 2 : 1 electrolyte, we observe a reentrant transition in which the electroosmotic flow first reverses and then returns to normal as the surface change density of the pore is increased.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"246 ","pages":" 11-46"},"PeriodicalIF":3.4,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9737651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Douglas R. MacFarlane, Alexandr N. Simonov, Thi Mung Vu, Sam Johnston and Luis Miguel Azofra
{"title":"Concluding remarks: Sustainable nitrogen activation – are we there yet?†","authors":"Douglas R. MacFarlane, Alexandr N. Simonov, Thi Mung Vu, Sam Johnston and Luis Miguel Azofra","doi":"10.1039/D3FD00087G","DOIUrl":"https://doi.org/10.1039/D3FD00087G","url":null,"abstract":"<p >The activation of dinitrogen as a fundamental step in reactions to produce nitrogen compounds, including ammonia and nitrates, has a cornerstone role in chemistry. Bringing together research from disparate fields where this can be achieved sustainably, this <em>Faraday Discussion</em> seeks to build connections between approaches that can stimulate further advances. In this paper we set out to provide an overview of these different approaches and their commonalities. We explore experimental aspects including the positive role of increasing nitrogen pressure in some fields, as well as offering perspectives on when <small><sup>15</sup></small>N<small><sub>2</sub></small> experiments might, and might not, be necessary. Deconstructing the nitrogen reduction reaction, we attempt to provide a common framework of energetic scales within which all of the different approaches and their components can be understood. On sustainability, we argue that although green ammonia produced from a green-H<small><sub>2</sub></small>-fed Haber–Bosch process seems to fit the bill, there remain many real-world contexts in which other, sustainable, approaches to this vital reaction are urgently needed.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"243 ","pages":" 557-570"},"PeriodicalIF":3.4,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3759157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nadia Balucani, Adriana Caracciolo, Gianmarco Vanuzzo, Dimitrios Skouteris, Marzio Rosi, Leonardo Pacifici, Piergiorgio Casavecchia, Kevin M. Hickson, Jean-Christophe Loison and Michel Dobrijevic
{"title":"An experimental and theoretical investigation of the N(2D) + C6H6 (benzene) reaction with implications for the photochemical models of Titan†","authors":"Nadia Balucani, Adriana Caracciolo, Gianmarco Vanuzzo, Dimitrios Skouteris, Marzio Rosi, Leonardo Pacifici, Piergiorgio Casavecchia, Kevin M. Hickson, Jean-Christophe Loison and Michel Dobrijevic","doi":"10.1039/D3FD00057E","DOIUrl":"https://doi.org/10.1039/D3FD00057E","url":null,"abstract":"<p >We report on a combined experimental and theoretical investigation of the N(<small><sup>2</sup></small>D) + C<small><sub>6</sub></small>H<small><sub>6</sub></small> (benzene) reaction, which is of relevance in the aromatic chemistry of the atmosphere of Titan. Experimentally, the reaction was studied (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (<em>E</em><small><sub>c</sub></small>) of 31.8 kJ mol<small><sup>−1</sup></small> to determine the primary products, their branching fractions (BFs), and the reaction micromechanism, and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 K to 296 K. Theoretically, electronic structure calculations of the doublet C<small><sub>6</sub></small>H<small><sub>6</sub></small>N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed <em>via</em> barrierless addition of N(<small><sup>2</sup></small>D) to the aromatic ring of C<small><sub>6</sub></small>H<small><sub>6</sub></small>, followed by formation of several cyclic (five-, six-, and seven-membered ring) and linear isomeric C<small><sub>6</sub></small>H<small><sub>6</sub></small>N intermediates that can undergo unimolecular decomposition to bimolecular products. Statistical estimates of product BFs on the theoretical PES were carried out under the conditions of the CMB experiments and at the temperatures relevant for Titan’s atmosphere. In all conditions the ring-contraction channel leading to C<small><sub>5</sub></small>H<small><sub>5</sub></small> (cyclopentadienyl) + HCN is dominant, while minor contributions come from the channels leading to <em>o</em>-C<small><sub>6</sub></small>H<small><sub>5</sub></small>N (<em>o</em>-N-cycloheptatriene radical) + H, C<small><sub>4</sub></small>H<small><sub>4</sub></small>N (pyrrolyl) + C<small><sub>2</sub></small>H<small><sub>2</sub></small> (acetylene), C<small><sub>5</sub></small>H<small><sub>5</sub></small>CN (cyano-cyclopentadiene) + H, and <em>p</em>-C<small><sub>6</sub></small>H<small><sub>5</sub></small>N + H. Rate constants (which are close to the gas kinetic limit at all temperatures, with the recommended value of 2.19 ± 0.30 × 10<small><sup>−10</sup></small> cm<small><sup>3</sup></small> s<small><sup>−1</sup></small> over the 50–296 K range) and BFs have been used in a photochemical model of Titan’s atmosphere to simulate the effect of the title reaction on the species abundances as a function of the altitude.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"245 ","pages":" 327-351"},"PeriodicalIF":3.4,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/fd/d3fd00057e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24849597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}