The journal of cardiovascular aging最新文献

筛选
英文 中文
Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart 心肌细胞衰老和衰老素对心脏的潜在治疗作用
The journal of cardiovascular aging Pub Date : 2024-06-03 DOI: 10.20517/jca.2024.06
P. Zhai, J. Sadoshima
{"title":"Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart","authors":"P. Zhai, J. Sadoshima","doi":"10.20517/jca.2024.06","DOIUrl":"https://doi.org/10.20517/jca.2024.06","url":null,"abstract":"Cellular senescence in cardiomyocytes, characterized by cell cycle arrest, resistance to apoptosis, and the senescence-associated secretory phenotype, occurs during aging and in response to various stresses, such as hypoxia/reoxygenation, ischemia/reperfusion, myocardial infarction (MI), pressure overload, doxorubicin treatment, angiotensin II, diabetes, and thoracic irradiation. Senescence in the heart has both beneficial and detrimental effects. Premature senescence of myofibroblasts has salutary effects during MI and pressure overload. On the other hand, persistent activation of senescence in cardiomyocytes precipitates cardiac dysfunction and adverse remodeling through paracrine mechanisms during MI, myocardial ischemia/reperfusion, aging, and doxorubicin-induced cardiomyopathy. Given the adverse roles of senescence in many conditions, specific removal of senescent cells, i.e., senolysis, is of great interest. Senolysis can be achieved using senolytic drugs (such as Navitoclax, Dasatinib, and Quercetin), pharmacogenetic approaches (including INK-ATTAC and AP20187, p16-3MR and Ganciclovir, p16 ablation, and p16-LOX-ATTAC and Cre), and immunogenetic interventions (CAR T cells or senolytic vaccination). In order to enhance the specificity and decrease the off-target effects of senolytic approaches, investigation into the mechanisms through which cardiomyocytes develop and/or maintain the senescent state is needed.","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysfunctional mitochondria elicit bioenergetic decline in the aged heart. 线粒体功能失调导致老年心脏生物能下降。
The journal of cardiovascular aging Pub Date : 2024-04-01 Epub Date: 2024-02-01 DOI: 10.20517/jca.2023.50
Pasquale Mone, Esther Densu Agyapong, Giampaolo Morciano, Stanislovas S Jankauskas, Antonio De Luca, Fahimeh Varzideh, Paolo Pinton, Gaetano Santulli
{"title":"Dysfunctional mitochondria elicit bioenergetic decline in the aged heart.","authors":"Pasquale Mone, Esther Densu Agyapong, Giampaolo Morciano, Stanislovas S Jankauskas, Antonio De Luca, Fahimeh Varzideh, Paolo Pinton, Gaetano Santulli","doi":"10.20517/jca.2023.50","DOIUrl":"10.20517/jca.2023.50","url":null,"abstract":"<p><p>Aging represents a complex biological progression affecting the entire body, marked by a gradual decline in tissue function, rendering organs more susceptible to stress and diseases. The human heart holds significant importance in this context, as its aging process poses life-threatening risks. It entails macroscopic morphological shifts and biochemical changes that collectively contribute to diminished cardiac function. Among the numerous pivotal factors in aging, mitochondria play a critical role, intersecting with various molecular pathways and housing several aging-related agents. In this comprehensive review, we provide an updated overview of the functional role of mitochondria in cardiac aging.</p>","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting vascular senescence in cardiovascular disease with aging. 针对心血管疾病中的血管衰老与衰老。
The journal of cardiovascular aging Pub Date : 2024-04-01 Epub Date: 2024-02-28 DOI: 10.20517/jca.2023.45
Shelby A Hall, Lisa A Lesniewski
{"title":"Targeting vascular senescence in cardiovascular disease with aging.","authors":"Shelby A Hall, Lisa A Lesniewski","doi":"10.20517/jca.2023.45","DOIUrl":"10.20517/jca.2023.45","url":null,"abstract":"<p><p>Aging is a major risk factor for atherosclerosis and cardiovascular disease (CVD). Two major age-associated arterial phenotypes, endothelial dysfunction and large elastic arterial stiffness, are autonomous predictors of future CVD diagnosis and contribute to the progression of CVD in older adults. Senescent cells lose the capacity to proliferate but remain metabolically active and secrete inflammatory factors termed senescence-associated secretory phenotype (SASP), leading to an increase in inflammation and oxidative stress. Accumulation of senescent cells is linked with the progression of age-related diseases and has been known to play a role in cardiovascular disease. In this brief review, we describe the characteristics and mechanisms of senescent cell accumulation and how senescent cells promote endothelial dysfunction and arterial stiffness. We focus on a range of novel therapeutic strategies aimed at reducing the burden of endothelial dysfunction leading to atherosclerosis through targeting senescent cells. Studies have begun to investigate a specific class of drugs that are able to selectively eliminate senescent cells, termed senolytics, which have shown great promise in reversing the aging phenotype and ameliorating pathologies in age-related disorders, creating a new opportunity for aging research. Generating therapies targeting the elimination of senescent cells would improve health span and increase longevity, making senolytics a promising therapy for cardiovascular diseases.</p>","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of brown adipose tissue in mediating healthful longevity. 棕色脂肪组织在调解健康长寿中的作用。
The journal of cardiovascular aging Pub Date : 2024-04-01 Epub Date: 2024-04-27 DOI: 10.20517/jca.2024.01
Jie Zhang, Berhanu Geresu Kibret, Dorothy E Vatner, Stephen F Vatner
{"title":"The role of brown adipose tissue in mediating healthful longevity.","authors":"Jie Zhang, Berhanu Geresu Kibret, Dorothy E Vatner, Stephen F Vatner","doi":"10.20517/jca.2024.01","DOIUrl":"10.20517/jca.2024.01","url":null,"abstract":"<p><p>There are two major subtypes of adipose tissue, i.e., white adipose tissue (WAT) and brown adipose tissue (BAT). It has been known for a long time that WAT mediates obesity and impairs healthful longevity. More recently, interest has focused on BAT, which, unlike WAT, actually augments healthful aging. The goal of this review is to examine the role of BAT in mediating healthful longevity. A major role for BAT and its related beige adipose tissue is thermogenesis, as a mechanism to maintain body temperature by producing heat through uncoupling protein 1 (UCP1) or through UCP1-independent thermogenic pathways. Our hypothesis is that healthful longevity is, in part, mediated by BAT. BAT protects against the major causes of impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, reduced exercise tolerance, and impaired blood flow. Several genetically engineered mouse models have shown that BAT enhances healthful aging and that their BAT is more potent than wild-type (WT) BAT. For example, when BAT, which increases longevity and exercise performance in mice with disruption of the regulator of G protein signaling 14 (RGS14), is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice also resulted in increased exercise performance, but only at 8 weeks after transplantation. In view of the ability of BAT to mediate healthful longevity, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.</p>","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From vitality to vulnerability: the impact of oxygen on cardiac function and regeneration 从活力到脆弱:氧气对心脏功能和再生的影响
The journal of cardiovascular aging Pub Date : 2024-02-22 DOI: 10.20517/jca.2024.05
Dogacan Yucel, William T. Pu
{"title":"From vitality to vulnerability: the impact of oxygen on cardiac function and regeneration","authors":"Dogacan Yucel, William T. Pu","doi":"10.20517/jca.2024.05","DOIUrl":"https://doi.org/10.20517/jca.2024.05","url":null,"abstract":"","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140441289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circulating culprit or therapeutic bullseye: lipoprotein(a) in cardiovascular risk assessment and novel therapeutic prospects 循环罪魁祸首还是治疗靶心:心血管风险评估中的脂蛋白(a)和新的治疗前景
The journal of cardiovascular aging Pub Date : 2024-01-17 DOI: 10.20517/jca.2023.35
A. Cesaro, Gianmaria Scherillo, G. De Michele, V. Acerbo, G. Signore, Domenico Panico, Gennaro Porcelli, F. Scialla, Giuseppe Raucci, Francesco Paolo Rotolo, Marco Tontodonato, Antonio De Pasquale, Andrea Vergara, Danilo Lisi, M. Mensorio, F. Fimiani, P. Calabrò
{"title":"Circulating culprit or therapeutic bullseye: lipoprotein(a) in cardiovascular risk assessment and novel therapeutic prospects","authors":"A. Cesaro, Gianmaria Scherillo, G. De Michele, V. Acerbo, G. Signore, Domenico Panico, Gennaro Porcelli, F. Scialla, Giuseppe Raucci, Francesco Paolo Rotolo, Marco Tontodonato, Antonio De Pasquale, Andrea Vergara, Danilo Lisi, M. Mensorio, F. Fimiani, P. Calabrò","doi":"10.20517/jca.2023.35","DOIUrl":"https://doi.org/10.20517/jca.2023.35","url":null,"abstract":"Lipoprotein(a) [Lp(a)] has emerged as a significant player in the realm of cardiovascular disease (CVD), exerting a pivotal role in atherosclerotic cardiovascular disease (ASCVD), aortic valve stenosis (AVS), and overall cardiovascular (CV) and all-cause mortality. Since its discovery in 1963 by Kåre Berg, our understanding of Lp(a) has undergone significant evolution. This comprehensive review delves into the genetics, structure, assembly, and inter-population differences of Lp(a), shedding light on its intricate involvement in CVD. Genetically, Lp(a) is primarily influenced by variations in the LPA gene. The LPA gene encodes apo(a) and the variation in the kringle domains is the main determinant of plasma Lp(a) levels. Other genetic variants, such as SNPs in the LPA gene region, the pentanucleotide repeat polymorphism, and specific SNPs in the coding sequences of kringle domains, have also been associated with varying Lp(a) concentrations. Additionally, genes outside the LPA locus, including APOE, APOH, and CEPT gene regions, contribute to Lp(a) variability across different populations. Inter-population differences in Lp(a) levels are evident, with ethnicity and sex playing significant roles. Racial disparities in median Lp(a) concentration have been observed, with black individuals often displaying higher levels compared to their white counterparts. The review underscores Lp(a) as an independent, heritable CV risk factor in both primary and secondary settings. High Lp(a) levels are closely linked to the recurrence of myocardial infarction, AVS, and CV events. The necessity of measuring Lp(a) concentration at least once in life to assess an individual's absolute global CV risk is emphasized. Despite substantial progress, many questions remain unanswered about Lp(a), including its physiological role in the cardiovascular system and its involvement in inflammatory and thrombotic processes. Ongoing research holds promise for the development of therapeutic interventions, such as pharmacological agents and apheresis, to mitigate the cardiovascular risks associated with elevated Lp(a) levels. This review highlights the multifaceted nature of Lp(a) in the context of cardiovascular health, emphasizing the importance of continued research efforts to unravel its complexities and develop innovative strategies for managing its associated risks.","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139527414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypertrophic cardiomyopathy in MYBPC3 carriers in aging 老龄化过程中 MYBPC3 携带者的肥厚型心肌病
The journal of cardiovascular aging Pub Date : 2024-01-11 DOI: 10.20517/jca.2023.29
Kalyani Ananthamohan, Julian E. Stelzer, S. Sadayappan
{"title":"Hypertrophic cardiomyopathy in MYBPC3 carriers in aging","authors":"Kalyani Ananthamohan, Julian E. Stelzer, S. Sadayappan","doi":"10.20517/jca.2023.29","DOIUrl":"https://doi.org/10.20517/jca.2023.29","url":null,"abstract":"Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3 ) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3 , underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139625747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term efficacy and safety of cardiac genome editing for catecholaminergic polymorphic ventricular tachycardia 心脏基因组编辑治疗儿茶酚胺能多态性室性心动过速的长期疗效和安全性
The journal of cardiovascular aging Pub Date : 2024-01-05 DOI: 10.20517/jca.2023.42
Oliver M. Moore, Yuriana Aguilar-Sánchez, S. Lahiri, M. Hulsurkar, J. Navarro-García, Tarah A. Word, Joshua A. Keefe, Dean Barazi, Elda M. Munivez, Charles T. Moore, Vaidya Parthasarathy, Jaysón M. Davidson, William R. Lagor, So Hyun Park, Gang Bao, Christina Y. Miyake, X.H.T. Wehrens
{"title":"Long-term efficacy and safety of cardiac genome editing for catecholaminergic polymorphic ventricular tachycardia","authors":"Oliver M. Moore, Yuriana Aguilar-Sánchez, S. Lahiri, M. Hulsurkar, J. Navarro-García, Tarah A. Word, Joshua A. Keefe, Dean Barazi, Elda M. Munivez, Charles T. Moore, Vaidya Parthasarathy, Jaysón M. Davidson, William R. Lagor, So Hyun Park, Gang Bao, Christina Y. Miyake, X.H.T. Wehrens","doi":"10.20517/jca.2023.42","DOIUrl":"https://doi.org/10.20517/jca.2023.42","url":null,"abstract":"Introduction: Heterozygous autosomal-dominant single nucleotide variants in RYR2 account for 60% of cases of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia disorder associated with high mortality rates. CRISPR/Cas9-mediated genome editing is a promising therapeutic approach that can permanently cure the disease by removing the mutant RYR2 allele. However, the safety and long-term efficacy of this strategy have not been established in a relevant disease model.\u0000 Aim: The purpose of this study was to assess whether adeno-associated virus type-9 (AAV9)-mediated somatic genome editing could prevent ventricular arrhythmias by removal of the mutant allele in mice that are heterozygous for Ryr2 variant p.Arg176Gln (R176Q/+).\u0000 Methods and Results: Guide RNA and SaCas9 were delivered using AAV9 vectors injected subcutaneously in 10-day -old mice. At 6 weeks after injection, R176Q/+ mice had a 100% reduction in ventricular arrhythmias compared to controls. When aged to 12 months, injected R176Q/+ mice maintained a 100% reduction in arrhythmia induction. Deep RNA sequencing revealed the formation of insertions/deletions at the target site with minimal off-target editing on the wild-type allele. Consequently, CRISPR/SaCas9 editing resulted in a 45% reduction of total Ryr2 mRNA and a 38% reduction in RyR2 protein. Genome editing was well tolerated based on serial echocardiography, revealing unaltered cardiac function and structure up to 12 months after AAV9 injection.\u0000 Conclusion: Taken together, AAV9-mediated CRISPR/Cas9 genome editing could efficiently disrupt the mutant Ryr2 allele, preventing lethal arrhythmias while preserving normal cardiac function in the R176Q/+ mouse model of CPVT.","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulators of clonal hematopoiesis and physiological consequences of this condition 克隆造血的调节因子及其生理后果
The journal of cardiovascular aging Pub Date : 2024-01-01 DOI: 10.20517/jca.2023.39
E. Park, Megan A. Evans, Kenneth Walsh
{"title":"Regulators of clonal hematopoiesis and physiological consequences of this condition","authors":"E. Park, Megan A. Evans, Kenneth Walsh","doi":"10.20517/jca.2023.39","DOIUrl":"https://doi.org/10.20517/jca.2023.39","url":null,"abstract":"Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in “driver” genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139128158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turning back time: effects of young plasma on pan epigenetic clocks and implications for the heart 时光倒流:年轻血浆对泛表观遗传时钟的影响及其对心脏的意义
The journal of cardiovascular aging Pub Date : 2024-01-01 DOI: 10.20517/jca.2023.44
Kathleen C. Woulfe, Emma L. Robinson
{"title":"Turning back time: effects of young plasma on pan epigenetic clocks and implications for the heart","authors":"Kathleen C. Woulfe, Emma L. Robinson","doi":"10.20517/jca.2023.44","DOIUrl":"https://doi.org/10.20517/jca.2023.44","url":null,"abstract":"","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139126882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信