PRX quantum : a Physical Review journal最新文献

筛选
英文 中文
Fault-Tolerant Quantum Simulation of Materials Using Bloch Orbitals 基于Bloch轨道的材料容错量子模拟
PRX quantum : a Physical Review journal Pub Date : 2023-10-06 DOI: 10.1103/prxquantum.4.040303
Nicholas C. Rubin, Dominic W. Berry, Fionn D. Malone, Alec F. White, Tanuj Khattar, A. Eugene DePrince, Sabrina Sicolo, Michael Küehn, Michael Kaicher, Joonho Lee, Ryan Babbush
{"title":"Fault-Tolerant Quantum Simulation of Materials Using Bloch Orbitals","authors":"Nicholas C. Rubin, Dominic W. Berry, Fionn D. Malone, Alec F. White, Tanuj Khattar, A. Eugene DePrince, Sabrina Sicolo, Michael Küehn, Michael Kaicher, Joonho Lee, Ryan Babbush","doi":"10.1103/prxquantum.4.040303","DOIUrl":"https://doi.org/10.1103/prxquantum.4.040303","url":null,"abstract":"An improvement and detailed accounting of the fault-tolerant resources required for $aphantom{rule{0}{0ex}}b$ $iphantom{rule{0}{0ex}}nphantom{rule{0}{0ex}}iphantom{rule{0}{0ex}}tphantom{rule{0}{0ex}}iphantom{rule{0}{0ex}}o$ simulation of periodic systems provides context for quantum computation in materials science.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Thermal Recall: Memory-Assisted Markovian Thermal Processes 热回忆:记忆辅助马尔可夫热过程
PRX quantum : a Physical Review journal Pub Date : 2023-10-06 DOI: 10.1103/prxquantum.4.040304
Jakub Czartowski, A. de Oliveira Junior, Kamil Korzekwa
{"title":"Thermal Recall: Memory-Assisted Markovian Thermal Processes","authors":"Jakub Czartowski, A. de Oliveira Junior, Kamil Korzekwa","doi":"10.1103/prxquantum.4.040304","DOIUrl":"https://doi.org/10.1103/prxquantum.4.040304","url":null,"abstract":"We develop a resource-theoretic framework that allows one to bridge the gap between two approaches to quantum thermodynamics based on Markovian thermal processes (which model memoryless dynamics) and thermal operations (which model arbitrarily non-Markovian dynamics). Our approach is built on the notion of memory-assisted Markovian thermal processes, where memoryless thermodynamic processes are promoted to non-Markovianity by explicitly modeling ancillary memory systems initialized in thermal equilibrium states. Within this setting, we propose a family of protocols composed of sequences of elementary two-level thermalizations that approximate all transitions between energy-incoherent states accessible via thermal operations. We prove that, as the size of the memory increases, these approximations become arbitrarily good for all transitions in the infinite temperature limit, and for a subset of transitions in the finite temperature regime. Furthermore, we present solid numerical evidence for the convergence of our protocol to any transition at finite temperatures. We also explain how our framework can be used to quantify the role played by memory effects in thermodynamic protocols such as work extraction. Finally, our results show that elementary control over two energy levels at a given time is sufficient to generate all energy-incoherent transitions accessible via thermal operations if one allows for ancillary thermal systems.7 MoreReceived 5 April 2023Revised 9 August 2023Accepted 6 September 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040304Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasOpen quantum systemsQuantum thermodynamicsResource theoriesTechniquesQuantum master equationQuantum Information, Science & Technology","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135352007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Variational Quantum Dynamics of Two-Dimensional Rotor Models 二维转子模型的变分量子动力学
PRX quantum : a Physical Review journal Pub Date : 2023-10-04 DOI: 10.1103/prxquantum.4.040302
Matija Medvidović, Dries Sels
{"title":"Variational Quantum Dynamics of Two-Dimensional Rotor Models","authors":"Matija Medvidović, Dries Sels","doi":"10.1103/prxquantum.4.040302","DOIUrl":"https://doi.org/10.1103/prxquantum.4.040302","url":null,"abstract":"Classical variational methods are used to simulate the dynamics of two-dimensional quantum models with continuous degrees of freedom using neural networks, pushing the limits of classical computation in simulating these systems.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135590667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond 金刚石中同位素工程iv族色心的超精细光谱研究
PRX quantum : a Physical Review journal Pub Date : 2023-10-02 DOI: 10.1103/prxquantum.4.040301
Isaac B.W. Harris, Cathryn P. Michaels, Kevin C. Chen, Ryan A. Parker, Michael Titze, Jesús Arjona Martínez, Madison Sutula, Ian R. Christen, Alexander M. Stramma, William Roth, Carola M. Purser, Martin Hayhurst Appel, Chao Li, Matthew E. Trusheim, Nicola L. Palmer, Matthew L. Markham, Edward S. Bielejec, Mete Atatüre, Dirk Englund
{"title":"Hyperfine Spectroscopy of Isotopically Engineered Group-IV Color Centers in Diamond","authors":"Isaac B.W. Harris, Cathryn P. Michaels, Kevin C. Chen, Ryan A. Parker, Michael Titze, Jesús Arjona Martínez, Madison Sutula, Ian R. Christen, Alexander M. Stramma, William Roth, Carola M. Purser, Martin Hayhurst Appel, Chao Li, Matthew E. Trusheim, Nicola L. Palmer, Matthew L. Markham, Edward S. Bielejec, Mete Atatüre, Dirk Englund","doi":"10.1103/prxquantum.4.040301","DOIUrl":"https://doi.org/10.1103/prxquantum.4.040301","url":null,"abstract":"A quantum register coupled to a spin-photon interface is a key component in quantum communication and information processing. Group-IV color centers in diamond (SiV−, GeV−, and SnV−) are promising candidates for this application, comprising an electronic spin with optical transitions coupled to a nuclear spin as the quantum register. However, the creation of a quantum register for these color centers with deterministic and strong coupling to the spin-photon interface remains challenging. Here, we make first-principles predictions of the hyperfine parameters of the group-IV color centers, which we verify experimentally with a comprehensive comparison between the spectra of spin active and spin neutral intrinsic dopant nuclei in single GeV− and SnV− emitters. In line with the theoretical predictions, detailed spectroscopy on large sample sizes reveals that hyperfine coupling causes a splitting of the optical transition of SnV− an order of magnitude larger than the optical line width and provides a magnetic field insensitive transition. This strong coupling provides access to a new regime for quantum registers in diamond color centers, opening avenues for novel spin-photon entanglement and quantum sensing schemes for these well-studied emitters.3 MoreReceived 6 June 2023Accepted 7 August 2023DOI:https://doi.org/10.1103/PRXQuantum.4.040301Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasFirst-principles calculationsQuantum communication, protocols & technologyQuantum Information, Science & TechnologyCondensed Matter, Materials & Applied Physics","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135828675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Self-Correction from Higher-Form Symmetry Protection on a Boundary 边界上高形式对称保护的自校正
PRX quantum : a Physical Review journal Pub Date : 2023-09-29 DOI: 10.1103/prxquantum.4.030341
Charles Stahl
{"title":"Self-Correction from Higher-Form Symmetry Protection on a Boundary","authors":"Charles Stahl","doi":"10.1103/prxquantum.4.030341","DOIUrl":"https://doi.org/10.1103/prxquantum.4.030341","url":null,"abstract":"Recent work has shown that a self-correcting quantum memory can exist in three spatial dimensions, provided that it is protected by a 1-form symmetry. Requiring that the dynamics of a system obey this type of symmetry is equivalent to enforcing a macroscopic number of symmetry terms throughout the bulk. In this paper, we show how to replace the explicit 1-form symmetry with an emergent 1-form symmetry in the bulk and an explicit 1-form symmetry on the boundary. To do so, we use the extended excitations of a three-dimensional (3D) toric code to confine anyons in a two-dimensional (2D) toric code on the boundary. The boundary anyons are bound to the bulk excitations by the explicit 1-form symmetry. Although the symmetry still has to be explicitly enforced on the boundary, this could conceivably be a more attainable constraint due to the accessibility of the boundary qubits. Furthermore, this only requires O(L2) terms for a system of linear size L, instead of O(L3) terms.4 MoreReceived 24 June 2022Revised 18 July 2023Accepted 6 September 2023DOI:https://doi.org/10.1103/PRXQuantum.4.030341Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum error correctionQuantum memoriesTopological orderQuantum Information, Science & TechnologyCondensed Matter, Materials & Applied Physics","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135245921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Encoding Error Correction in an Integrated Photonic Chip 集成光子芯片的编码纠错
PRX quantum : a Physical Review journal Pub Date : 2023-09-27 DOI: 10.1103/prxquantum.4.030340
Hui Zhang, Lingxiao Wan, Stefano Paesani, Anthony Laing, Yuzhi Shi, Hong Cai, Xianshu Luo, Guo-Qiang Lo, Leong Chuan Kwek, Ai Qun Liu
{"title":"Encoding Error Correction in an Integrated Photonic Chip","authors":"Hui Zhang, Lingxiao Wan, Stefano Paesani, Anthony Laing, Yuzhi Shi, Hong Cai, Xianshu Luo, Guo-Qiang Lo, Leong Chuan Kwek, Ai Qun Liu","doi":"10.1103/prxquantum.4.030340","DOIUrl":"https://doi.org/10.1103/prxquantum.4.030340","url":null,"abstract":"Integrated photonics provides a versatile platform for encoding and processing quantum information. However, the encoded quantum states are sensitive to noise, which limits their capability to perform complicated quantum computations. Here, we use a five-qubit linear cluster state on a silicon photonic chip to implement a quantum error-correction code and demonstrate its capability of identifying and correcting a single-qubit error. The encoded quantum information is reconstructed from a single-qubit error and an average state fidelity of 0.863±0.032 is achieved for different input states. We further extend the scheme to demonstrate a fault-tolerant measurement-based quantum computation (MBQC) on stabilizer formalism that allows us to redo the qubit operation against the failure of the teleportation process. Our work provides a proof-of-concept working prototype of error correction and MBQC in an integrated photonic chip.3 MoreReceived 30 April 2023Accepted 5 September 2023DOI:https://doi.org/10.1103/PRXQuantum.4.030340Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasMeasurement-based quantum computingOptical quantum information processingQuantum error correctionQuantum Information, Science & Technology","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135535315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To Review Is to Be 复习就是生活
PRX quantum : a Physical Review journal Pub Date : 2023-09-25 DOI: 10.1103/prxquantum.4.030001
Randall D. Kamien
{"title":"To Review Is to Be","authors":"Randall D. Kamien","doi":"10.1103/prxquantum.4.030001","DOIUrl":"https://doi.org/10.1103/prxquantum.4.030001","url":null,"abstract":"Received 16 August 2023DOI:https://doi.org/10.1103/PRXQuantum.4.030001© 2023 American Physical Society","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135814353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasiparticle Dynamics in Epitaxial Al - InAs Planar Josephson Junctions 外延Al - InAs平面Josephson结的准粒子动力学
PRX quantum : a Physical Review journal Pub Date : 2023-09-22 DOI: 10.1103/prxquantum.4.030339
Bassel Heiba Elfeky, William M. Strickland, Jaewoo Lee, James T. Farmer, Sadman Shanto, Azarin Zarassi, Dylan Langone, Maxim G. Vavilov, Eli M. Levenson-Falk, Javad Shabani
{"title":"Quasiparticle Dynamics in Epitaxial Al - InAs Planar Josephson Junctions","authors":"Bassel Heiba Elfeky, William M. Strickland, Jaewoo Lee, James T. Farmer, Sadman Shanto, Azarin Zarassi, Dylan Langone, Maxim G. Vavilov, Eli M. Levenson-Falk, Javad Shabani","doi":"10.1103/prxquantum.4.030339","DOIUrl":"https://doi.org/10.1103/prxquantum.4.030339","url":null,"abstract":"Quasiparticle (QP) effects play a significant role in the coherence and fidelity of superconducting quantum circuits. The Andreev bound states of high-transparency Josephson junctions can act as low-energy traps for QPs, providing a mechanism for studying the dynamics and properties of both the QPs and the junction. Using locally injected and thermal QPs, we study QP loss and QP poisoning in epitaxial Al-InAs Josephson junctions incorporated in a superconducting quantum interference device (SQUID) galvanically shorting a superconducting resonator to ground. We observe changes in the resonance line shape and frequency shifts consistent with QP trapping into and clearing out of the ABSs of the junctions when the junctions are phase biased. By monitoring the QP trapping and clearing mechanisms in time, we find a time scale of O(1μs) for these QP dynamics, consistent with the presence of phonon-mediated QP-QP interactions. Our measurements suggest that electron-phonon interactions play a significant role in the relaxation mechanisms of our system, while electron-photon interactions and electron-phonon interactions govern the clearing mechanisms. Our results highlight the QP-induced dissipation and complex QP dynamics in superconducting quantum circuits fabricated on superconductor-semiconductor heterostructures.5 MoreReceived 16 March 2023Accepted 18 August 2023DOI:https://doi.org/10.1103/PRXQuantum.4.030339Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasMajorana bound statesQuasiparticles & collective excitationsPhysical SystemsSQUIDSemiconductorsSuperconducting devicesQuantum Information, Science & TechnologyCondensed Matter, Materials & Applied Physics","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136058799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tailoring Three-Dimensional Topological Codes for Biased Noise 有偏噪声的三维拓扑编码裁剪
PRX quantum : a Physical Review journal Pub Date : 2023-09-20 DOI: 10.1103/prxquantum.4.030338
Eric Huang, Arthur Pesah, Christopher T. Chubb, Michael Vasmer, Arpit Dua
{"title":"Tailoring Three-Dimensional Topological Codes for Biased Noise","authors":"Eric Huang, Arthur Pesah, Christopher T. Chubb, Michael Vasmer, Arpit Dua","doi":"10.1103/prxquantum.4.030338","DOIUrl":"https://doi.org/10.1103/prxquantum.4.030338","url":null,"abstract":"A weight-reduction technique allows the tailoring of various three-dimensional topological codes for enhanced storage performance and demystifies the occurrence of a 50 percent threshold for infinitely biased Pauli noise.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136313594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Repetitive Readout and Real-Time Control of Nuclear Spin Qubits in 171Yb Atoms 171Yb原子中核自旋量子比特的重复读出和实时控制
PRX quantum : a Physical Review journal Pub Date : 2023-09-18 DOI: 10.1103/prxquantum.4.030337
William Huie, Lintao Li, Neville Chen, Xiye Hu, Zhubing Jia, Won Kyu Calvin Sun, Jacob P. Covey
{"title":"Repetitive Readout and Real-Time Control of Nuclear Spin Qubits in 171Yb Atoms","authors":"William Huie, Lintao Li, Neville Chen, Xiye Hu, Zhubing Jia, Won Kyu Calvin Sun, Jacob P. Covey","doi":"10.1103/prxquantum.4.030337","DOIUrl":"https://doi.org/10.1103/prxquantum.4.030337","url":null,"abstract":"We demonstrate high-fidelity repetitive measurements of nuclear spin qubits in an array of neutral ytterbium-171 (171Yb) atoms. We show that the qubit state can be measured with a spin-flip probability of 0.004(4) for a single tweezer and 0.012(3) averaged over the array. This is accomplished by high cyclicity of one of the nuclear spin qubit states with an optically excited state under a magnetic field of B=58 G, resulting in a spin-flip probability of approximately 10−5 per scattered photon during fluorescence readout. The performance improves further as ∼1/B2. The state discrimination fidelity is 0.993(4) with a state-averaged readout survival of 0.994(3), limited by off-resonant scattering to dark states. We combine our measurement technique with high-contrast rotations of the nuclear spin qubit via an ac magnetic field to explore two paradigmatic scenarios, including the noncommutativity of measurements in orthogonal bases, and the quantum Zeno mechanism in which measurements “freeze” coherent evolution. Finally, we employ real-time feedforward to repetitively and deterministically prepare the qubit in the +z or −z direction after initializing it in a different basis and performing a measurement in the Z basis. These capabilities constitute an important step towards adaptive quantum circuits with atom arrays.10 MoreReceived 10 May 2023Accepted 21 August 2023DOI:https://doi.org/10.1103/PRXQuantum.4.030337Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasAtomic, optical & lattice clocksQuantum algorithms & computationQuantum controlQuantum information processingQuantum measurementsQuantum Information, Science & TechnologyAtomic, Molecular & Optical","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":"168 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135153940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信