{"title":"Metric Learning Using Iwasawa Decomposition.","authors":"Bing Jian, Baba C Vemuri","doi":"10.1109/ICCV.2007.4408846","DOIUrl":"10.1109/ICCV.2007.4408846","url":null,"abstract":"<p><p>Finding a good metric over the input space plays a fundamental role in machine learning. Most existing techniques use the Mahalanobis metric without incorporating the geometry of positive matrices and experience difficulties in the optimization procedure. In this paper we introduce the use of Iwasawa decomposition, a unique and effective parametrization of symmetric positive definite (SPD) matrices, for performing metric learning tasks. Unlike other previously employed factorizations, the use of the Iwasawa decomposition is able to reformulate the semidefinite programming (SDP) problems as smooth convex nonlinear programming (NLP) problems with much simpler constraints. We also introduce a modified Iwasawa coordinates for rank-deficient positive semidefinite (PSD) matrices which enables the unifying of the metric learning and linear dimensionality reduction. We show that the Iwasawa decomposition can be easily used in most recent proposed metric learning algorithms and have applied it to the Neighbourhood Components Analysis (NCA). The experimental results on several public domain datasets are also presented.</p>","PeriodicalId":74564,"journal":{"name":"Proceedings. IEEE International Conference on Computer Vision","volume":"2007 Article 4408846","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630184/pdf/nihms73487.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"27949054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Melonakos, Marc Niethammer, Vandana Mohan, Marek Kubicki, James V Miller, Allen Tannenbaum
{"title":"Locally-Constrained Region-Based Methods for DW-MRI Segmentation.","authors":"John Melonakos, Marc Niethammer, Vandana Mohan, Marek Kubicki, James V Miller, Allen Tannenbaum","doi":"10.1109/iccv.2007.4409167","DOIUrl":"https://doi.org/10.1109/iccv.2007.4409167","url":null,"abstract":"<p><p>In this paper, we describe a method for segmenting fiber bundles from diffusion-weighted magnetic resonance images using a locally-constrained region based approach. From a pre-computed optimal path, the algorithm propagates outward capturing only those voxels which are locally connected to the fiber bundle. Rather than attempting to find large numbers of open curves or single fibers, which individually have questionable meaning, this method segments the full fiber bundle region. The strengths of this approach include its ease-of-use, computational speed, and applicability to a wide range of fiber bundles. In this work, we show results for segmenting the cingulum bundle. Finally, we explain how this approach and extensions thereto overcome a major problem that typical region-based flows experience when attempting to segment neural fiber bundles.</p>","PeriodicalId":74564,"journal":{"name":"Proceedings. IEEE International Conference on Computer Vision","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/iccv.2007.4409167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31226656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diffusion Tensor Estimation by Maximizing Rician Likelihood.","authors":"Bennett Landman, Pierre-Louis Bazin, Jerry Prince","doi":"10.1109/iccv.2007.4409140","DOIUrl":"10.1109/iccv.2007.4409140","url":null,"abstract":"<p><p>Diffusion tensor imaging (DTI) is widely used to characterize white matter in health and disease. Previous approaches to the estimation of diffusion tensors have either been statistically suboptimal or have used Gaussian approximations of the underlying noise structure, which is Rician in reality. This can cause quantities derived from these tensors - e.g., fractional anisotropy and apparent diffusion coefficient - to diverge from their true values, potentially leading to artifactual changes that confound clinically significant ones. This paper presents a novel maximum likelihood approach to tensor estimation, denoted Diffusion Tensor Estimation by Maximizing Rician Likelihood (DTEMRL). In contrast to previous approaches, DTEMRL considers the joint distribution of all observed data in the context of an augmented tensor model to account for variable levels of Rician noise. To improve numeric stability and prevent non-physical solutions, DTEMRL incorporates a robust characterization of positive definite tensors and a new estimator of underlying noise variance. In simulated and clinical data, mean squared error metrics show consistent and significant improvements from low clinical SNR to high SNR. DTEMRL may be readily supplemented with spatial regularization or a priori tensor distributions for Bayesian tensor estimation.</p>","PeriodicalId":74564,"journal":{"name":"Proceedings. IEEE International Conference on Computer Vision","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488430/pdf/nihms357234.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31033866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Robust Algorithm for Point Set Registration Using Mixture of Gaussians.","authors":"Bing Jian, Baba C Vemuri","doi":"10.1109/ICCV.2005.17","DOIUrl":"10.1109/ICCV.2005.17","url":null,"abstract":"<p><p>This paper proposes a novel and robust approach to the point set registration problem in the presence of large amounts of noise and outliers. Each of the point sets is represented by a mixture of Gaussians and the point set registration is treated as a problem of aligning the two mixtures. We derive a closed-form expression for the L(2) distance between two Gaussian mixtures, which in turn leads to a computationally efficient registration algorithm. This new algorithm has an intuitive interpretation, is simple to implement and exhibits inherent statistical robustness. Experimental results indicate that our algorithm achieves very good performance in terms of both robustness and accuracy.</p>","PeriodicalId":74564,"journal":{"name":"Proceedings. IEEE International Conference on Computer Vision","volume":"2 ","pages":"1246-1251"},"PeriodicalIF":0.0,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630186/pdf/nihms-73729.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"27947196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}