PhotochemPub Date : 2024-02-01DOI: 10.3390/photochem4010006
Valli Kamala Laxmi Ramya Chittoory, Marketa Filipsika, Radim Bartoš, M. Králová, P. Dzik
{"title":"Physicochemical Properties of Tungsten Trioxide Photoanodes Fabricated by Wet Coating of Soluble, Particulate, and Mixed Precursors","authors":"Valli Kamala Laxmi Ramya Chittoory, Marketa Filipsika, Radim Bartoš, M. Králová, P. Dzik","doi":"10.3390/photochem4010006","DOIUrl":"https://doi.org/10.3390/photochem4010006","url":null,"abstract":"Advanced oxidation processes are emerging technologies for the decomposition of organic pollutants in various types of water by harnessing solar energy. The purpose of this study is to examine the physicochemical characteristics of tungsten(VI) oxide (WO3) photoanodes, with the aim of enhancing oxidation processes in the treatment of water. The fabrication of WO3 coatings on conductive fluorine-doped tin oxide (FTO) substrates was achieved through a wet coating process that utilized three different liquid formulations: a dispersion of finely milled WO3 particles, a fully soluble WO3 precursor (acetylated peroxo tungstic acid), and a combination of both (applying a brick-and-mortar strategy). Upon subjecting the WO3 coatings to firing at a temperature of 450 °C, it was observed that their properties exhibited marked variations. The fabricated photoanodes are examined using a range of analytical techniques, including profilometry, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and voltammetry. The experimental data suggest that the layers generated through the combination of particulate ink and soluble precursor (referred to as the brick-and-mortar building approach) display advantageous physicochemical properties, rendering them suitable for use as photoanodes in photoelectrochemical cells.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139820931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotochemPub Date : 2024-01-31DOI: 10.3390/photochem4010005
Denis S. Tikhonov, Diksha Garg, Melanie Schnell
{"title":"Inverse Problems in Pump–Probe Spectroscopy","authors":"Denis S. Tikhonov, Diksha Garg, Melanie Schnell","doi":"10.3390/photochem4010005","DOIUrl":"https://doi.org/10.3390/photochem4010005","url":null,"abstract":"Ultrafast pump–probe spectroscopic studies allow for deep insights into the mechanisms and timescales of photophysical and photochemical processes. Extracting valuable information from these studies, such as reactive intermediates’ lifetimes and coherent oscillation frequencies, is an example of the inverse problems of chemical kinetics. This article describes a consistent approach for solving this inverse problem that avoids the common obstacles of simple least-squares fitting that can lead to unreliable results. The presented approach is based on the regularized Markov Chain Monte-Carlo sampling for the strongly nonlinear parameters, allowing for a straightforward solution of the ill-posed nonlinear inverse problem. The software to implement the described fitting routine is introduced and the numerical examples of its application are given. We will also touch on critical experimental parameters, such as the temporal overlap of pulses and cross-correlation time and their connection to the minimal reachable time resolution.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140473140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotochemPub Date : 2024-01-29DOI: 10.3390/photochem4010004
M. Imran, Dongyi Liu, Kaiyue Ye, Xue Zhang, Jianzhang Zhao
{"title":"The Rhodamine–Perylene Compact Electron Donor–Acceptor Dyad: Spin-Orbit Charge-Transfer Intersystem Crossing and the Energy Balance of the Triplet Excited States","authors":"M. Imran, Dongyi Liu, Kaiyue Ye, Xue Zhang, Jianzhang Zhao","doi":"10.3390/photochem4010004","DOIUrl":"https://doi.org/10.3390/photochem4010004","url":null,"abstract":"We prepared a rhodamine (RB)–perylene (Pery) compact electron donor/acceptor dyad (RB–Pery) to study the spin-orbit charge-transfer intersystem crossing (SOCT–ISC). The UV–vis absorption spectrum indicates a negligible electronic interaction between the donor and acceptor at ground state. However, the fluorescence of both the RB and Pery units are quenched in the dyad, which is attributed to the photoinduced electron transfer, supported by the electrochemical studies. Nanosecond transient absorption (ns-TA) spectra show delocalized triplet states, i.e., there is an excited-state equilibrium between Pery and the RB triplet states. The triplet state lifetime was determined as 109.8 μs. With intermolecular triplet–triplet energy transfer, monitored using ns-TA spectra, the triplet-state energy balance between RB and Pery in RB–Pery was confirmed. The proposed cascade photophysical processes of the dyad are 1RB*-Pery→RB–Pery+•→[3RB*-Pery↔RB-3Pery*]. Moreover, long-lived rhodamine radical cation (in milliseconds) was detected in both deaerated/aerated non-polar or low-polarity solvents (i.e., p-xylene, toluene). The potential energy curve of the dyad against the variation in the dihedral angle between the two units indicates large torsional freedom (53°~128°) in RB–Pery, which leads to inefficient SOCT–ISC; consequently, low singlet-oxygen quantum yields (ΦΔ = 2~8%) were observed.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140487206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotochemPub Date : 2024-01-15DOI: 10.3390/photochem4010003
L. Daniel, Salatiel Kapofi, Martha Kandawa-Schulz, H. Kwaambwa
{"title":"Interactions of CdSe Nanocrystals with Cationic Proteins Extracted from Moringa oleifera Seeds","authors":"L. Daniel, Salatiel Kapofi, Martha Kandawa-Schulz, H. Kwaambwa","doi":"10.3390/photochem4010003","DOIUrl":"https://doi.org/10.3390/photochem4010003","url":null,"abstract":"Even with significant developments in nanoscience, relatively little is known about the interactions of nanocrystal semiconducting materials with bio-macromolecules. To investigate the interfacial phenomena of cadmium selenide quantum dot (CdSe QD) nanocrystals with proteins extracted from Moringa oleifera seeds, different concentrations of cadmium selenide quantum dots–Moringa oleifera seed protein (CdSe–MSP) complexes were prepared. Respective CdSe QDs with hexagonal phase and crystalline size in the range of 4–7 nm were synthesized and labelled with the purified mesoporous MSP having a surface area of 8.4 m2/g. The interaction mechanism between CdSe QDs and MSP was studied using UV–Vis absorption, fluorescence emission and Fourier Transform Infrared spectroscopies. The UV–Vis absorption spectra showed absorption bands of CdSe–MSP complexes at 546.5 nm. The fluorescence intensity of CdSe QDs was found to decrease with increasing concentration of MSP. The thermodynamic potentials ∆Hθ (−321.3 × 103 Jmol−1); ∆Sθ (156.0 JK−1mol−1) and ∆Gθ (−46.6 × 103 Jmol−1) were also calculated. The stability of the complex found is strongly influenced by electrostatics interaction and surface-bound complexation equilibrium attraction. This information can help to elucidate the surface characteristics of MSP and its potential interactions with other molecules or nanoparticles.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139622071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotochemPub Date : 2024-01-10DOI: 10.3390/photochem4010002
Guoying Yao, Zhenyu Yang, T. Zeng
{"title":"Survey of T1 and T2 Energies of Intramolecular Singlet Fission Chromophores","authors":"Guoying Yao, Zhenyu Yang, T. Zeng","doi":"10.3390/photochem4010002","DOIUrl":"https://doi.org/10.3390/photochem4010002","url":null,"abstract":"Singlet fission is a desired process in photovoltaics since it enhances photoelectric conversion efficiency. Intramolecular singlet fission is of special interest as the fission efficiency can be improved through tuning configurations between chromophore units that are covalently connected. However, intramolecular singlet fission chromophores feature a large tetraradical character, and may tend to dissatisfy the ET2>2ET1 criterion for all singlet fission chromophores, intramolecular or not. We performed spin-flip time-dependent density functional theory calculations for a collection of representative intramolecular singlet fission chromophores to show that this is indeed the case.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139440708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotochemPub Date : 2024-01-04DOI: 10.3390/photochem4010001
Christopher Abelt, Kirsten Sweigart
{"title":"Twisted 8-Acyl-1-dialkyl-amino-naphthalenes Emit from a Planar Intramolecular Charge Transfer Excited State","authors":"Christopher Abelt, Kirsten Sweigart","doi":"10.3390/photochem4010001","DOIUrl":"https://doi.org/10.3390/photochem4010001","url":null,"abstract":"Fluorescence from dialkylamino donor–acyl acceptor substituted 1,8-naphthalene derivatives can occur either from a planar (PICT) or a twisted (TICT) intramolecular charge transfer excited state. The photophysical properties of 8-acetyl-1-(dimethyl-amino)naphthalene (3) and 8-pivaloyl-1-(dimethyl-amino)naphthalene (4) are compared with 1-methyl-2,3-dihydronaphtho[1,8-bc]azepin-4(1H)-one (5). In 3 and 4, both the carbonyl and amino groups are forced to twist out of the plane of the naphthalene ring. In 5, these groups are nearly coplanar with the naphthalene. Neither 3 nor 4 fluoresce as strongly as 5, but all three show similar degrees of solvato-chromism and all are strongly quenched by alcohol solvents. Nitrile 6, 8-cyano-1-(dimethyl-amino)naphthalene, does not show the same degree of solvato-chromism as 3–5, nor is it as affected by alcohols. Calculations corroborate the experimental results, indicating that 3–5 emit from a PICT excited state.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotochemPub Date : 2023-12-12DOI: 10.3390/photochem3040030
F. Dumur
{"title":"Recent Advances in Visible Light Photoinitiating Systems Based on Flavonoids","authors":"F. Dumur","doi":"10.3390/photochem3040030","DOIUrl":"https://doi.org/10.3390/photochem3040030","url":null,"abstract":"The design of biosourced and/or bioinspired photoinitiators is an active research field as it offers a unique opportunity to develop photoinitiating systems exhibiting better biocompatibility as well as reduced toxicity. In this field, flavonoids can be found in numerous fruits and vegetables so these structures can be of interest for developing, in the future, polymerization processes, offering a reduced environmental impact but also better biocompatibility of the polymers. In this review, the different flavonoids reported to date as photoinitiators of polymerization are presented. Over the years, different modifications of the flavonoid scaffold have been examined including the grafting of well-known chromophores, the preparation of Type II photoinitiators or the introduction of photocleavable groups enabling the generation of Type I photoinitiators. Different families of flavonoids have also been investigated, enabling to design of high-performance photoinitiating systems.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotochemPub Date : 2023-11-07DOI: 10.3390/photochem3040027
Artemis Pappa, Feidias Bairamis, Ioannis Konstantinou
{"title":"Photolytic Degradation of the Insecticide Clothianidin in Hydrochar Aquatic Suspensions and Extracts","authors":"Artemis Pappa, Feidias Bairamis, Ioannis Konstantinou","doi":"10.3390/photochem3040027","DOIUrl":"https://doi.org/10.3390/photochem3040027","url":null,"abstract":"In this study, the aqueous photolytic degradation of the neonicotinoid pesticide clothianidin was studied in suspensions and aqueous extracts of hydrochar produced from olive kernels. A slight and nonsignificant decrease in the photodegradation rate of clothianidin in aqueous extracts of hydrochar (HCw) with an initial concentration of hydrochar ranged from 50 to 400 mg L−1 (rate constants ranged between k = 0.0034 and 0.0039 min−1) was observed in comparison to the respective rate in the bi-distilled water (k = 0.0040 min−1). On the contrary, in the presence of hydrochar suspensions (HCp), a significant decrease was observed for 50 mg L−1 hydrochar particle concentration (k = 0.020 min−1), while for higher concentrations (100 to 400 mg L−1), rate constants increased but with nonsignificant differences compared with the kinetics followed in the absence of them. Generally, the photodegradation rate of clothianidin, in the presence of HCw and HCp, is reduced compared to the photodegradation rate in bi-distilled aqueous solutions, except in the case of the aqueous suspension with an HCp concentration of 200 mg L−1. The transformation products (TPs) of clothianidin formed in the photolytic degradation processes were identified using ultrahigh-performance liquid chromatography coupled with accurate high-resolution mass spectrometry technique (UHPLC-LTQ-ORBITRAP). The formation profiles of TPs varied according to the matrix showing different degrees of participation of direct and indirect (photosensitized) phototransformation pathways. Photolytic degradation of clothianidin takes place mainly through denitration, hydroxylation and dechlorination pathways. Finally, the toxicity of the identified TPs was studied using the Vibrio fischeri bioassay. Toxicity was slightly reduced after 300 min of irradiation while maximum value was observed after 180–240 min of irradiation showing the formation of more toxic TPs along the photochemical degradation.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135474596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotochemPub Date : 2023-10-24DOI: 10.3390/photochem3040026
Mikayla Browning, Alexandra Jefferson, Jazz Geter, Kesete Ghebreyessus
{"title":"Metal Ion-Induced Formation of Metallogels by Visible-Light-Responsive Phenylalanine-Functionalized Arylazopyrazole Ligands","authors":"Mikayla Browning, Alexandra Jefferson, Jazz Geter, Kesete Ghebreyessus","doi":"10.3390/photochem3040026","DOIUrl":"https://doi.org/10.3390/photochem3040026","url":null,"abstract":"A visible-light-responsive arylazopyrazole-functionalized phenylalanine (4-MeS-AAP-NF) derived ligand was designed and synthesized, and it was found to form metallogels with reversible photo-responsive properties in mixed methanol/water (MeOH/H2O) solvents. The gelation behavior of the 4-MeS-AAP-NF ligand in the presence of different divalent metal ions in mixed methanol/water (MeOH/H2O) solvents at pH~11.60 was studied. It was found that the 4-MeS-AAP-NF ligand alone could not self-assemble to form any gels. However, in the presence of divalent metal ions, it readily formed the assembled metallogels in an alkaline aqueous/methanol solution with various morphologies. The results suggest that the gelation process was triggered by divalent metal ions. The presence of the AAP moiety in the gel matrix rendered the metallogel assemblies photo-responsive, and the reversible gel-to-sol phase transition was studied by UV-vis spectroscopy. The gels showed a slow, reversible visible-light-induced gel-to-sol phase transition under blue (λ = 405 nm) and then sol-to-gel transition by green light (λ = 530 nm) irradiation, resulting in the re-formation of the original gel state. The morphology and viscoelastic properties of the yellow–orange opaque metallogels were characterized by scanning electron microscopy (SEM) and rheological measurement, respectively.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135316251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotochemPub Date : 2023-10-17DOI: 10.3390/photochem3040025
Werner Fudickar, Melanie Metz, Tobias Krüger-Braunert, Alexandra Kelling, Eric Sperlich, Pablo Wessig, Torsten Linker
{"title":"Photochemistry of β-γ-Unsaturated Spirolactones","authors":"Werner Fudickar, Melanie Metz, Tobias Krüger-Braunert, Alexandra Kelling, Eric Sperlich, Pablo Wessig, Torsten Linker","doi":"10.3390/photochem3040025","DOIUrl":"https://doi.org/10.3390/photochem3040025","url":null,"abstract":"β-γ-unsaturated spirolactones are easily available by Birch reduction. We describe their photochemistry in the presence of or without carbonyl compounds. The spirolactones show a distinct absorption band at 230 nm, which is not present in other cyclohexadienes. We explain this behavior by an interaction of the double bonds with the carbonyl group through space, further proven by TDDFT calculations. This allows their direct excitation with UV-C light. Interestingly, we obtain only products of an oxa-di-π-methane rearrangement, hitherto unknown for lactones. This speaks for a reaction pathway starting from singlet states, confirmed by calculated relative energies of biradical intermediates. Although polymerization is the main side reaction, we were able to isolate tricyclic lactones in moderate yields in a pure form. In the presence of benzaldehyde or benzophenone, excitation with UV-B light was possible, leading to H-atom abstraction in the allylic position and formation of alcohols. With an electron-rich double bond, the Paternó–Büchi products were isolated as well. The different diastereomers were separated by column chromatography or HPLC. Their relative configurations were determined using NOESY measurements or X-ray structure analysis. Overall, β-γ-unsaturated spirolactones show a remarkably different photochemistry compared to other cyclohexadienes, affording new products in only a few steps.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135993835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}