Paracelsus proceedings of experimental medicine最新文献

筛选
英文 中文
The Predictive Power of Cellular Homeostasis Models Illustrated with a Study of the Gardos Effect 用Gardos效应研究细胞稳态模型的预测能力
Paracelsus proceedings of experimental medicine Pub Date : 2022-12-07 DOI: 10.33594/000000593
V. Lew
{"title":"The Predictive Power of Cellular Homeostasis Models Illustrated with a Study of the Gardos Effect","authors":"V. Lew","doi":"10.33594/000000593","DOIUrl":"https://doi.org/10.33594/000000593","url":null,"abstract":"Alexey Vereninov and collaborators pioneered the application of mathematical models of cellular homeostasis with ground-breaking contributions to the understanding of the mechanisms behind the dynamics of homeostatic changes in a variety of different cell types. As part of an issue dedicated to Vereninov’s memory, I thought that an example of the predictive potential of such models would be a fitting tribute to his work and achievements. The “Gardos effect” is the example chosen from our modelling experience.","PeriodicalId":74396,"journal":{"name":"Paracelsus proceedings of experimental medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46623787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Suicidal Death of Human Erythrocytes Following Exposure to Pentostatin 暴露于喷他汀后人类红细胞的自杀死亡
Paracelsus proceedings of experimental medicine Pub Date : 2022-10-19 DOI: 10.33594/000000576
Abdulla Al Mamun Bhuyana, Kousi Alzoubib, A. Fazioc, Marilena Brigliad, Caterina Faggioe, F. Langb
{"title":"Suicidal Death of Human Erythrocytes Following Exposure to Pentostatin","authors":"Abdulla Al Mamun Bhuyana, Kousi Alzoubib, A. Fazioc, Marilena Brigliad, Caterina Faggioe, F. Langb","doi":"10.33594/000000576","DOIUrl":"https://doi.org/10.33594/000000576","url":null,"abstract":"Background/Aims: Pentostatin (2'-deoxycoformycin), a purine analog, is used for the treatment of diverse B and T-cell malignancies as well as for immunosuppression. Pentostatin is at least in part effective by triggering apoptosis. Pentostatin sensitive mechanisms leading to apoptosis include accumulation of DNA strand breaks, altered transcription and mitochondrial depolarization. Erythrocytes lack nuclei and mitochondria but nevertheless may enter eryptosis, an apoptosis-like suicidal cell death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i), ceramide formation and energy depletion. The present study tested, whether and how pentostatin induces eryptosis. Methods: The phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, ceramide abundance utilizing specific antibodies, and cytosolic ATP concentration utilizing a luciferin–luciferase assay kit. Results: A 48 hours exposure of human erythrocytes to pentostatin (≥5 µg/ml) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. Pentostatin significantly increased [Ca2+]i, and significantly decreased cytosolic ATP, but did not significantly modify ceramide abundance. The effect of pentostatin on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusion: Pentostatin triggers erythrocyte shrinkage and phospholipid scrambling of the erythrocyte cell membrane, effects paralleled by and at least partially due to entry of extracellular Ca2+ and cellular energy depletion.","PeriodicalId":74396,"journal":{"name":"Paracelsus proceedings of experimental medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44503562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleic Acids Regulate Intracellular Ions and Membrane Potential 核酸调节细胞内离子和膜电位
Paracelsus proceedings of experimental medicine Pub Date : 2022-03-15 DOI: 10.33594/000000613
{"title":"Nucleic Acids Regulate Intracellular Ions and Membrane Potential","authors":"","doi":"10.33594/000000613","DOIUrl":"https://doi.org/10.33594/000000613","url":null,"abstract":"The positive charge on the major intracellular inorganic cations (K+, Na+, and Mg2+) significantly exceeds the combined negative charge on Cl- and HCO3-. This so-called anion gap must be balanced by organic anions. From the analysis of published data, we conclude that organic phosphorus-containing compounds (Po) are responsible for the neutralization of much of the anion gap. Importantly, many of them are large polymers, such as DNA, RNA, or polyphosphate, that undergo regular synthesis and degradation. That produces a variable average valency z associated with organic anions. It follows from theory that an increase in z should lead to membrane hyperpolarization and accumulation of cations: this result has been known before, and here we further confirm it by an analysis based on different cellular and computational models. Furthermore, we show that inhibition of potassium channels is expected to reduce the uptake of phosphorus through sodium-coupled transporters. This suggests a simple explanation to two long-established experimental facts about DNA synthesis: namely, that it is accompanied by cell hyperpolarization and that it requires functional potassium channels.","PeriodicalId":74396,"journal":{"name":"Paracelsus proceedings of experimental medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45767532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sprifermin for Treatment of Osteoarthritis: Recombinant Fibroblast Growth Factor 18 as a Possible Disease-Modifying Knee Osteoarthritis Drug 斯普利明治疗骨关节炎:重组成纤维细胞生长因子18可能是一种改善膝关节骨关节炎的药物
Paracelsus proceedings of experimental medicine Pub Date : 2022-03-15 DOI: 10.33594/000000612
{"title":"Sprifermin for Treatment of Osteoarthritis: Recombinant Fibroblast Growth Factor 18 as a Possible Disease-Modifying Knee Osteoarthritis Drug","authors":"","doi":"10.33594/000000612","DOIUrl":"https://doi.org/10.33594/000000612","url":null,"abstract":"Osteoarthritis (OA) is a major cause of pain and disability in adults, affecting approximately 150 million people worldwide. It is most prevalent in knees and hips. Major risk factors are age, female sex, prior joint injury, and obesity. OA causes significant personal and steeply rising socio-economical costs in ageing populations. OA is characterized by progressive cartilage damage and inflammation. In later stages, it affects the subchondral bone, bone marrow, ligaments, tendons, and nerves und eventually leads to joint failure. Symptoms include pain, joint swelling, and stiffness. Therapies are symptomatic and focus on pain relief and measures to improve mobility, or, ultimately, joint replacement. So far, no drugs that could prevent or slow down disease progression are available. Based on promising in vitro and preclinical studies, recombinant fibroblast growth factor (FGF) 18 (sprifermin; Merck Serono) has come into focus as a potential disease-modifying OA drug (DMOAD). Three randomized controlled trials (RCTs) investigating the safety and efficacy of intraarticularly (i.a.) injected sprifermin application in patients with knee OA have been completed so far. Data from these trials, post hocanalyses and follow-ups provide have evidenced that i.a. sprifermin induced a significant and sustained increase in cartilage thickness and volume without specific adverse effects, but in terms of clinical symptoms or physical joint function sprifermin did not cause significant improvements compared to placebo treatment in whole study populations. However, significant pain reduction was observed in a “subgroup at risk” of patients with more severe disease states, indicating that under certain disease conditions the structural benefit improvements could translate into clinical benefit. This calls for larger RCTs allowing e.g., for disease state or risk factor-specific stratification of patients and longer follow-ups to substantiate the efficacy of sprifermin as a possible DMOAD. This review gives an overview on the prevalence, etiology and socio-economic burden of OA, its pathogenesis as well as the current treatment options of the disease. It summarizes the role of FGF-18 in chondrocyte and cartilage (patho)physiology and addresses the question of evidence for the efficacy and safety of i.a. sprifermin injection in patients with knee OA based on trial outcomes and literature data.","PeriodicalId":74396,"journal":{"name":"Paracelsus proceedings of experimental medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42034896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信