Oxford open materials science最新文献

筛选
英文 中文
Metal-based porous hydrogels for highly conductive biomaterial scaffolds 高导电性生物材料支架用金属基多孔水凝胶
Oxford open materials science Pub Date : 2023-01-01 DOI: 10.1093/oxfmat/itad002
Christina M Tringides, Marjolaine Boulingre, David J Mooney
{"title":"Metal-based porous hydrogels for highly conductive biomaterial scaffolds","authors":"Christina M Tringides, Marjolaine Boulingre, David J Mooney","doi":"10.1093/oxfmat/itad002","DOIUrl":"https://doi.org/10.1093/oxfmat/itad002","url":null,"abstract":"Abstract Multielectrode arrays are fabricated from thin films of highly conductive and ductile metals, which cannot mimic the natural environment of biological tissues. These properties limit the conformability of the electrode to the underlying target tissue and present challenges in developing seamless interfaces. By introducing porous, hydrogel materials that are embedded with metal additives, highly conductive hydrogels can be formed. Tuning the hydrogel composition, % volume and aspect ratio of different additive(s), and the processing conditions of these composite materials can alter the mechanical and electrical properties. The resulting materials have a high surface area and can be used as biomaterial scaffolds to support the growth of macrophages for 5 days. Further optimization can enable the use of the materials for the electrodes in implantable arrays, or as living electrode platforms, to study and modulate various cellular cultures. These advancements would benefit both in vivo and in vitro applications of tissue engineering.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135126894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Organic Molecule Single-Photon Sources 有机分子单光子源
Oxford open materials science Pub Date : 2022-12-27 DOI: 10.1093/oxfmat/itac017
M. Gaither-Ganim, Scott Newlon, Michael G Anderson, Bumsu Lee
{"title":"Organic Molecule Single-Photon Sources","authors":"M. Gaither-Ganim, Scott Newlon, Michael G Anderson, Bumsu Lee","doi":"10.1093/oxfmat/itac017","DOIUrl":"https://doi.org/10.1093/oxfmat/itac017","url":null,"abstract":"\u0000 Since the onset of the 90’s, the development of single molecule spectroscopy has led to the discovery of various quantum optical signatures in organic single molecules. The single-photon nature of an organic chromophore is of particular importance because of its potential as a non-classical photon source at room temperature for quantum information science and optical quantum computing. This condensed review focuses on the introduction of fundamental knowledge and basic experimental methods for single photon sources and organic molecular photophysics, and summarizes the research developments in this field providing an understanding of quantum emission from organic single molecules.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48522626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium Based Batteries: Development, Commercialization Journey and New Emerging Chemistries 钠基电池:发展、商业化之旅和新兴化学
Oxford open materials science Pub Date : 2022-12-26 DOI: 10.1093/oxfmat/itac019
Poonam Yadav, V. Shelke, Apurva Patrike, M. Shelke
{"title":"Sodium Based Batteries: Development, Commercialization Journey and New Emerging Chemistries","authors":"Poonam Yadav, V. Shelke, Apurva Patrike, M. Shelke","doi":"10.1093/oxfmat/itac019","DOIUrl":"https://doi.org/10.1093/oxfmat/itac019","url":null,"abstract":"\u0000 Development, commercialization, and use of LIBs will reach their peak soon. At present, this is posing the future risk of supply of raw materials for LIBs due to their restricted distribution and lack of effective Li-recycling technology. SBBs are considered the best alternative to LIBs due to their similarity in chemistries and fabrication techniques. However, SBB technology does not have high energy density and is not mature enough yet to meet the energy requirement of wide application sectors. Scientists are optimizing different anode, cathode, and electrolyte materials, and fabrication techniques to boost the electrochemical performance of SBB. Several companies have been founded to commercialize the SBB technology. This review summarizes the development of different SBB chemistries and their commercialization by companies. It also discusses chemistries that seem promising in the future development and commercialization of SBBs.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45452240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Magneto-structural Phase transition in Exfoliated Pyrrhotite (Fe7S8) Ultra-thin Sheets 剥落磁黄铁矿(Fe7S8)超薄薄片的磁结构相变
Oxford open materials science Pub Date : 2022-12-26 DOI: 10.1093/oxfmat/itac020
Aravind Puthirath Balan, E. Oliveira, G. Costin, Tia Gray, Nithya Chakingal, Abhijit Biswas, Anand B. Puthirath
{"title":"Magneto-structural Phase transition in Exfoliated Pyrrhotite (Fe7S8) Ultra-thin Sheets","authors":"Aravind Puthirath Balan, E. Oliveira, G. Costin, Tia Gray, Nithya Chakingal, Abhijit Biswas, Anand B. Puthirath","doi":"10.1093/oxfmat/itac020","DOIUrl":"https://doi.org/10.1093/oxfmat/itac020","url":null,"abstract":"\u0000 Non-van der Waals two-dimensional materials are gaining popularity due to their exciting confinement-enhanced properties for magnetic, catalytic, and optoelectronic applications. The recent discovery of mechanical and liquid exfoliation of non-van der Waals materials along the cleavage planes, owing to the very low scission energies, is encouraging and opens the avenue for further exploration of non-van der Waals materials having exceptional properties. Herein, we successfully isolated a few layers of Pyrrhotite (Fe7S8) nanosheets from bulk mineral ore by means of liquid phase exfoliation in organic solvent and studied the magnetic ordering at bulk and exfoliated samples. Both experimental and first principle theoretical investigations point out confinement-induced magneto-structural phase transition from ferromagnetic monoclinic (4M) to antiferromagnetic hexagonal (3T) characterized by the suppression of Besnus transition.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43748208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of Anchoring Groups Number on the Photovoltaic Parameters in Dye-Sensitized Solar Cells 锚定基团数目对染料敏化太阳能电池光伏参数的影响
Oxford open materials science Pub Date : 2022-12-22 DOI: 10.1093/oxfmat/itac018
T. Swetha, S. Singh
{"title":"Effect of Anchoring Groups Number on the Photovoltaic Parameters in Dye-Sensitized Solar Cells","authors":"T. Swetha, S. Singh","doi":"10.1093/oxfmat/itac018","DOIUrl":"https://doi.org/10.1093/oxfmat/itac018","url":null,"abstract":"\u0000 We have developed a series of Ru-Sensitizers (GS16, GS17, and GS19) with molecular architecture containing a tridentate ligand with one, two, and three anchoring groups and three thiocyanates. Furthermore, we have studied the effect of the number of carboxylic groups on photovoltaic properties. The absorption spectra of the novel sensitizers extended up to the red region (900 nm). The electrochemical studies reveal that the oxidation potentials are aligned below the iodine-based redox potential, feasible for easy regeneration and the LUMO of all sensitizers lie above the TiO2 conduction band, which is a favour for easy electron injection. The overall efficiency (η) of the GS16, GS17, and GS19 is 1.13%, 2.71%, and 1.59% with short circuit current (JSC) of 3.74 mA cm−2, 7.08 mA cm−2, 6.27 mA cm−2, open-circuit voltage (VOC) of 0.42 V, 0.54 V and 0.39 V and fill factor (FF) of 0.70, 0.70 and 0.65 respectively. The highest efficiency of 2.71% was observed in GS17, bearing the two anchoring groups compared to one and three carboxylic acid-containing sensitizers (GS16 and GS19). Theoretical studies are also examined and matched with the experimental data.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46927293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Understanding Water Structure and Hydrogen Association on Platinum-Electrolyte Interface 了解铂-电解质界面上的水结构和氢缔合
Oxford open materials science Pub Date : 2022-12-12 DOI: 10.1093/oxfmat/itac014
Sumit Bawari, Ankush Guha, T. N. Narayanan, Jagannath Mondal
{"title":"Understanding Water Structure and Hydrogen Association on Platinum-Electrolyte Interface","authors":"Sumit Bawari, Ankush Guha, T. N. Narayanan, Jagannath Mondal","doi":"10.1093/oxfmat/itac014","DOIUrl":"https://doi.org/10.1093/oxfmat/itac014","url":null,"abstract":"\u0000 Platinum (Pt) is a benchmarked catalyst for several electro-catalytic processes, although the complex nature of heterogeneous charge transfer processes at the platinum-electrolyte interface hinders an atomistic level understanding of the electrodics. In this study, we aim to capture the chemical changes of Pt surfaces brought on by an applied potential, which can probe the catalytic efficacy under varying applied bias. Through a combined experimental and reactive molecular dynamics (MD) simulation approach, we uncover the effect of charge build up on the surface of the Pt electrode, which can be directed towards capacitive and faradaic processes. In the case of a moderately acidic pH shown here, the potential dependence of simulated electrodic processes align well with the experimental results from electrochemistry and in situ surface enhanced Raman spectroscopy (SERS). Using reactive MD and SERS based studies, we are able to probe into the interfacial water structure and the formation of the Helmholtz layer. At reductive potentials of ∼0.3-0.0 V vs RHE, we simulate phenomenon such as under potential hydrogen adsorption and hydrogen evolution/oxidation reaction. Together, the investigation establishes a framework for quantitative exploration of catalytic processes in electrolytes at very high spatial and temporal resolution.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41934676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Comprehensive Review on Graphene-based Materials as Biosensors for Cancer Detection 石墨烯基材料作为癌症检测生物传感器的综述
Oxford open materials science Pub Date : 2022-12-06 DOI: 10.1093/oxfmat/itac013
Rim M. Alsharabi, Suyash Rai, Hamed Y. Mohammed, Maamon A. Farea, S. Srinivasan, P. Saxena, A. Srivastava
{"title":"A Comprehensive Review on Graphene-based Materials as Biosensors for Cancer Detection","authors":"Rim M. Alsharabi, Suyash Rai, Hamed Y. Mohammed, Maamon A. Farea, S. Srinivasan, P. Saxena, A. Srivastava","doi":"10.1093/oxfmat/itac013","DOIUrl":"https://doi.org/10.1093/oxfmat/itac013","url":null,"abstract":"\u0000 Nowadays, cancer is increasingly becoming one of the foremost threats to human being life worldwide, and diagnosing this deadly disease is one of the major priorities of researchers. Described as a monolayer-thin-sheet of hexagonally patterned carbon atoms, ‘graphene’ is considered an innovative evergreen carbon material ideal for a wide array of sensing applications and nanotechnologies. Graphene-based materials have acquired a huge share of interest in the scope of biosensor fabrication for early and accurate cancer diagnosis. Herein, we have insights reviewed the various routes and technologies for synthesized graphene, and graphene-based materials including 3D graphene (i.e., hydrogels, foams, sponges, porous), and 0D graphene (i.e., quantum dots). Moreover, we have introduced the different types of graphene/graphene-based materials biosensors (i.e., electrochemical biosensors, optical biosensors, field-effect transistors biosensors, electrochemiluminescence biosensors, and microfluidics biosensors) and their merits and applications for cancer pre-stage detection.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49405945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Microwave Absorbing Materials for Stealth Application: A Holistic Overview 微波吸收材料的隐身应用综述
Oxford open materials science Pub Date : 2022-12-02 DOI: 10.1093/oxfmat/itac012
Priyambada Sahoo, L. Saini, A. Dixit
{"title":"Microwave Absorbing Materials for Stealth Application: A Holistic Overview","authors":"Priyambada Sahoo, L. Saini, A. Dixit","doi":"10.1093/oxfmat/itac012","DOIUrl":"https://doi.org/10.1093/oxfmat/itac012","url":null,"abstract":"\u0000 Implementation of stealth features on advanced airborne platforms (Aircrafts, Unmanned Air Vehicles, Missiles, etc.) has become a compulsion for each country, for denial/delay detection of these objects from enemy Radars, during tactical missions. Apart from the shaping of airframe, implementation of Microwave Absorbing Materials (MAMs) on identified locations of airborne vehicles is the only viable solution to reduce their Radar Cross Section (RCS) and eventually attain stealth capabilities. Numerous dielectric and magnetic class materials have been developed over the last few decades to fulfil the requirement for RCS reduction against various Radars operating in different frequency ranges. In this review, a detailed representation of almost entire range of materials used as MAMs has been provided along with their possible Microwave (MW) loss mechanism to fill the gap that existed for a systematic insight on MAMs till now. The current limitations, and future aspects are also discussed for the development of future stealth materials.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48110118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
High-entropy metal oxide containing hybrid electrolyte for long-life Li-metal batteries 含高熵金属氧化物的长寿命锂金属电池混合电解质
Oxford open materials science Pub Date : 2022-11-17 DOI: 10.1093/oxfmat/itac011
Mingsheng Li, Liqi Wang, Yongzheng Shi, Jikai Zhang, Qiang-juan Zhu, J. Shang, Bin Li, Shubin Yang
{"title":"High-entropy metal oxide containing hybrid electrolyte for long-life Li-metal batteries","authors":"Mingsheng Li, Liqi Wang, Yongzheng Shi, Jikai Zhang, Qiang-juan Zhu, J. Shang, Bin Li, Shubin Yang","doi":"10.1093/oxfmat/itac011","DOIUrl":"https://doi.org/10.1093/oxfmat/itac011","url":null,"abstract":"\u0000 Solid-state electrolytes are responsible for transporting lithium ions between electrodes in solid-state batteries and are essential for high-safety and high-energy lithium-metal batteries. Developing novel solid-state electrolytes with high ionic conductivity and good interfacial contact is an urgent need. Here, to this end, a solid-state hybrid electrolyte is developed by mixing high-entropy lithium-containing metal oxide (Lix(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)1-xO, HEOLi) matrix and poly(ethylene oxide)-lithium salt binder and casting on PTFE substrate. By virtue of the low lithium-ion migration energy barrier of the HEOLi (0.36 eV) and the strong interaction between the oxygen vacancies of the HEOLi and the lithium salt anions, a biphasic transport of lithium ions in both inorganic and polymeric phases of the hybrid electrolyte is achieved, yielding a high ionic conductivity of 3 × 10−4 S cm−1 at 30 °C. The Li/Li symmetric cells with the hybrid electrolyte show a low overpotential of 45 mV and a long cycle life of more than 2500 h. Furthermore, coupled with the LiFePO4 cathodes and metallic lithium anodes, solid-state full cells with the hybrid electrolyte deliver a high capacity of 150 mAh g−1, stable cycle performance, and high safety. Consequently, hybrid electrolytes based on high-entropy metal oxides have broad application prospects in solid-state electrochemical energy storage and are expected to achieve lithium-metal batteries with high safety, high energy density, and long life.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46587293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Management of Hard Tissue Abnormalities and Digital Orthopaedics Using Additive Manufacturing Techniques 使用增材制造技术管理硬组织异常和数字整形外科
Oxford open materials science Pub Date : 2022-10-31 DOI: 10.1093/oxfmat/itac009
M. Das, Rukhsar Alam, Monalisa Das, B. Biswal, B. P. Samal, A. Patnaik, S. Panda, P. S. Owuor, Prabir Patra, Chandramani Tiwary
{"title":"Management of Hard Tissue Abnormalities and Digital Orthopaedics Using Additive Manufacturing Techniques","authors":"M. Das, Rukhsar Alam, Monalisa Das, B. Biswal, B. P. Samal, A. Patnaik, S. Panda, P. S. Owuor, Prabir Patra, Chandramani Tiwary","doi":"10.1093/oxfmat/itac009","DOIUrl":"https://doi.org/10.1093/oxfmat/itac009","url":null,"abstract":"\u0000 Additive manufacturing technologies are expected to disrupt the majority of the traditional way of manufacturing methods, particularly in the field of medical and healthcare. Bones and teeth are vital organs that are susceptible to various disorders due to environmental, traumatic, genetic factors, and inherent malignant disorders. Most of the implants/prostheses normally used are cast and have a standard size and shape. Additive manufacturing has opened opportunities to replace these hard tissues with customized implants, prostheses, or the whole additive manufactured organ itself while considering anatomical/structural parts and functional aspects of the body. It helps to visualize and mimic internal organs/models, pre-planning via simulation, anatomical demonstration, treatments, and surgical teaching/training to technical staff by medical professionals. The current review covers additive manufacturing applications for the possible treatment of osteosarcoma, bone tumors, traumatic fracture, congenital anomalies, dental diseases, vertebral and cranial abnormalities, etc. from toe to head highlighting printing of long bones, short bones, cartilages, teeth, and more based on the general classification of bones shape i.e. the external shape and size of different bones with some case studies. The article has also touched upon the additive manufacturing competitive edge over the conventional methods in terms of complexity, easiness, cost-effectiveness, reduced time. However, the internal structures have not been addressed so far in additive manufacturing which could be a new corner to enhance the properties of bones and teeth in the future.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46674419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信