{"title":"The Impact of Structural Parameters on Multimode D-Shape Optical Fiber Refractive Index Sensors for Different Materials","authors":"Hiba Abbas, Zainab Albawi","doi":"10.1364/optcon.502577","DOIUrl":"https://doi.org/10.1364/optcon.502577","url":null,"abstract":"","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"65 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antoine Leymonerie, J. Boisvert, Leonie Juszczak, S. Loranger
{"title":"Enhanced sensitivity distributed sensing of magnetic fields in optical fiber using random Bragg grating","authors":"Antoine Leymonerie, J. Boisvert, Leonie Juszczak, S. Loranger","doi":"10.1364/optcon.509943","DOIUrl":"https://doi.org/10.1364/optcon.509943","url":null,"abstract":"We show that the use of Random Optical Grating using UV Exposure (ROGUE) can significantly reduce the noise floor of an optical frequency domain reflectometry (OFDR) measurement of Faraday rotation in the polarization. We compare it with unexposed spun fiber which shows a S/P minimum ratio (signal noise floor) 20 dB higher than when using our ROGUE. High sensitivity magnetic field measurements are achieved by spatially filtering (setting a gage length) the derivative of the S/P ratio's evolution. Example of a calibrated electromagnet spatially resolved B-field measurement is demonstrated, which can measure fields down to 10 mT with 10 cm spatial resolution. The potential for current sensing using such ROGUE apparatus is discussed and simulation shows a noise floor of around 1 A with 40 probing loops spatial resolution.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139314141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Capturing videos at 60 frames per second using incoherent digital holography","authors":"Tetsuhiko Muroi, Teruyoshi Nobukawa, Yutaro Katano, Kei Hagiwara","doi":"10.1364/optcon.504455","DOIUrl":"https://doi.org/10.1364/optcon.504455","url":null,"abstract":"","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135616538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One Dimensional Temperature Measurements by Resonantly Ionized Photoemission Thermometry of Molecular Nitrogen","authors":"Walker McCord, Aleksander Clark, Zhili Zhang","doi":"10.1364/optcon.503546","DOIUrl":"https://doi.org/10.1364/optcon.503546","url":null,"abstract":"This paper presents an extensive parameter study of a non-intrusive and non-seeded laser diagnostic method for measuring one dimensional (1D) rotational temperature of molecular nitrogen (N 2 ) at 165 - 450 K. Compared to previous efforts using molecular oxygen, here resonantly ionized and photoelectron induced fluorescence of molecular nitrogen for thermometry (N 2 RIPT) was demonstrated. The RIPT signal is generated by directly probing various rotational levels within the rovibrational absorption band of N 2 , corresponding to the 3-photon transition of N 2 ( X 1 Σ g + , v =0→ b 1 Π u , v ′ =6) near 285 nm, without involving collisional effects of molecular oxygen and nitrogen. The photoionized N 2 produces strong first negative band of N 2 + ( B 2 Σ u + − X 2 Σ g + ) near 390 nm, 420 nm, and 425 nm. Boltzmann analyses of various discrete fluorescence emission lines yield rotational temperatures of molecular nitrogen. By empirically choosing multiple rotational levels within the absorption band, non-scanning thermometry can be accurately achieved for molecular nitrogen. It is demonstrated that the N 2 RIPT technique can measure 1D temperature profile up to ∼5 cm in length within a pure N 2 environment. Multiple wavelengths are thoroughly analyzed and listed that are accurate for RIPT for various temperature ranges.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Open Source, Heterogeneous, NonlinearOptics Simulation","authors":"Nicholas Karpowicz","doi":"10.1364/optcon.502567","DOIUrl":"https://doi.org/10.1364/optcon.502567","url":null,"abstract":"The spatio-temporal evolution of a laser field taking part in a nonlinear optical interaction can be challenging to simulate, yet forms the basis for many experiments in ultrafast optics. To allow better insight into these phenomena, a program for nonlinear optics simulations is described, which can run on multiple hardware platforms, and is performant and open source. It was designed to deal with a number of complex problems in light-matter interaction accurately and reproducibly. The open source code allows for extensive cross-checking of its results by other researchers and growth of its capabilities over time, as well as serving to make the simulations associated with ultrafast experiments more broadly reproducible.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135667247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Analysis of Photon Absorption of Gate-defined Quantum Dots Embedded in Asymmetric Bull’s-eye Optical Cavities","authors":"Sangmin Ji, Satoshi Iwamoto","doi":"10.1364/optcon.492718","DOIUrl":"https://doi.org/10.1364/optcon.492718","url":null,"abstract":"Improving the photon-spin conversion efficiency without polarization dependence is a major challenge in realizing quantum interfaces gate-defined quantum dots (QDs) for polarization-encoded photonic quantum network systems. Previously, we reported the design of an air-bridge bull's-eye cavity that enhances the photon absorption efficiency of an embedded gate-defined QD regardless of the photon polarization. Here, we numerically demonstrate that a further 1.6 times improvement in efficiency is possible by simply adjusting the distance of the substrate from the semiconductor slab where the bull's-eye structure is formed. Our analysis clarifies that the upward-preferred coupling and narrow far-field emission pattern realized by substrate-induced asymmetry enable the improvement.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135993240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Méndez, Maximino Arroyo Carrasco, Roman Torres, Marcela Méndez-Otero, Beatriz Martínez Irivas, Marcelo Iturbe-Castillo
{"title":"Z-scan analytical solutions for thin media with high order refractive nonlinearity and multiphoton absorption","authors":"José Méndez, Maximino Arroyo Carrasco, Roman Torres, Marcela Méndez-Otero, Beatriz Martínez Irivas, Marcelo Iturbe-Castillo","doi":"10.1364/optcon.500124","DOIUrl":"https://doi.org/10.1364/optcon.500124","url":null,"abstract":"Considering that a thin media presents solely one type of nonlinearity, we obtain an analytical solution for far field on-axis Z-scan detection; a second solution is obtained for open aperture case. To find the analytical solutions, we propose a form for the nonlinear high order refractive and multiphoton absorption of the media. Z-scan curves are presented where the nonlinear high order refractive and multiphoton absorption are varied.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136184382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear interaction between non-orthogonally polarization-multiplexed signals in fiber transmission with polarization-dependent loss","authors":"Kyo Inoue, Koji Igarashi","doi":"10.1364/optcon.499394","DOIUrl":"https://doi.org/10.1364/optcon.499394","url":null,"abstract":"Polarization-division-multiplexing (PDM) is widely used in fiber transmission systems, wherein fiber nonlinearity is a crucial issue to be considered. Conventionally, the Manakov equation has been used to analyze the nonlinear propagation properties of PDM signal lights, which describes the nonlinear interaction between orthogonally polarized lights. However, because the polarization states of PDM signals are not necessarily orthogonal in transmission systems with polarization-dependent loss (PDL), it is not certain if the Manakov equation is applicable to such systems. Therefore, this study presents a wave equation that describes the nonlinear interaction between non-orthogonally polarized PDM signal lights. We derive a formula that considers the nonorthogonality resulting from PDL. Calculation based on the formula is carried out, the result of which shows that the nonlinear wave equation assuming orthogonal PDM signals results in negligible errors in effect when treating nonorthogonal PDM signals.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136184381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highly Sensitive Dual Core Photonic CrystalFibre based LSPR Sensor with SimultaneousMulti-Analyte Detection of a Wide RefractiveIndex Range","authors":"Saadman Yasar, Mohammad Faisal","doi":"10.1364/optcon.504003","DOIUrl":"https://doi.org/10.1364/optcon.504003","url":null,"abstract":"","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}