NeuroImmune pharmacology and therapeutics最新文献

筛选
英文 中文
Senescent macrophages alter fibroblast fibrogenesis in response to SARS-CoV-2 infection. 衰老巨噬细胞对SARS-CoV-2感染的反应改变成纤维细胞的纤维形成。
NeuroImmune pharmacology and therapeutics Pub Date : 2022-03-25 DOI: 10.1515/nipt-2022-0003
Brandt Pence, Yufeng Zhang, Ivy Antwi, Theodore James Cory
{"title":"Senescent macrophages alter fibroblast fibrogenesis in response to SARS-CoV-2 infection.","authors":"Brandt Pence,&nbsp;Yufeng Zhang,&nbsp;Ivy Antwi,&nbsp;Theodore James Cory","doi":"10.1515/nipt-2022-0003","DOIUrl":"https://doi.org/10.1515/nipt-2022-0003","url":null,"abstract":"<p><p>SARS-CoV-2 has, since its emergence in 2019, become a global pandemic. Disease outcomes are worsened in older patients who are infected. The causes for this is multifactorial, but one potential cause for this disparity is increased rates of cellular senescence in older individuals, particularly in immune cells. Cellular senescence, the accumulation of factors resulting in cell growth arrest and apoptosis resistance, increases as individuals age. In immune cells, senescence is associated with increased inflammation, and alterations in immune response. We utilized a co-culture system consisting of senescent or non-senescent macrophages directly cultured with fibroblasts, and infected with SARS-CoV-2. We assessed the expression of collagen and fibronectin, important molecules in the extracellular matrix, as well as a number of fibrogenic factors. We observed that infection with SARS-CoV-2 induced collagen production in co-cultures with senescent, but not non-senescent macrophages. Fibronectin expression was decreased in both co-culture conditions. While significant results were not observed, concentrations of other fibrogenic molecules were consistent with the collagen results. These data demonstrate that senescence in macrophages alters the production of fibrotic molecules from fibroblasts in a SARS-CoV-2 infection model. As collagen and fibronectin expression are generally directly correlated, this suggests that senescence dysregulates fibrogenesis in response to infection with SARS-CoV-2. There is a need to further investigate the mechanisms for these changes.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"1 1","pages":"37-42"},"PeriodicalIF":0.0,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9181565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protection of dopaminergic neurons in hemiparkinsonian monkeys by flavouring ingredient glyceryl tribenzoate. 香料成分三苯甲酸甘油酯对半帕金森病猴多巴胺能神经元的保护作用。
NeuroImmune pharmacology and therapeutics Pub Date : 2022-03-25 Epub Date: 2022-06-08 DOI: 10.1515/nipt-2022-0005
Suresh B Rangasamy, Debashis Dutta, Susanta Mondal, Moumita Majumder, Sridevi Dasarathy, Goutam Chandra, Kalipada Pahan
{"title":"Protection of dopaminergic neurons in hemiparkinsonian monkeys by flavouring ingredient glyceryl tribenzoate.","authors":"Suresh B Rangasamy, Debashis Dutta, Susanta Mondal, Moumita Majumder, Sridevi Dasarathy, Goutam Chandra, Kalipada Pahan","doi":"10.1515/nipt-2022-0005","DOIUrl":"10.1515/nipt-2022-0005","url":null,"abstract":"<p><p>Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and this study underlines the significance of a small molecule glyceryl tribenzoate (GTB), a FDA approved food additive, in preventing parkinsonian pathologies in MPTP-induced animal models. The study conducted in MPTP-induced mice demonstrated dose-dependent protection of nigral tyrosine hydroxylase (TH) and striatal dopamine level by GTB oral treatment and the optimum dose was found to be 50 mg/kg/d. In the next phase, the study was carried out in MPTP-injected hemiparkinsonian monkeys, which recapitulate better clinical parkinsonian syndromes. GTB inhibited MPTP-driven induction of glial inflammation, which was evidenced by reduced level of GTP-p21<sup>Ras</sup> and phospho-p65 in SN of monkeys. It led to decreased expression of inflammatory markers such as IL-1β and iNOS. Simultaneously, GTB oral treatment protected nigral TH cells, striatal dopamine, and improved motor behaviour of hemiparkinsonian monkeys. Presence of sodium benzoate, a GTB metabolite and a FDA-approved drug for urea cycle disorders and glycine encephalopathy, in the brain suggests that the neuroprotective effect imparted by GTB might be mediated by sodium benzoate. Although the mechanism of action of GTB is poorly understood, the study sheds light on the therapeutic possibility of a food additive GTB in PD.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"1 1","pages":"7-22"},"PeriodicalIF":0.0,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10607038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using IPA tools to characterize molecular pathways underlying the involvement of IRF7 in antiviral response to HIV. 利用IPA工具表征IRF7参与HIV抗病毒反应的分子途径。
NeuroImmune pharmacology and therapeutics Pub Date : 2022-03-25 DOI: 10.1515/nipt-2022-0009
Nikhil K Kota, Michael Vigorito, Velu Krishnan, Sulie L Chang
{"title":"Using IPA tools to characterize molecular pathways underlying the involvement of IRF7 in antiviral response to HIV.","authors":"Nikhil K Kota,&nbsp;Michael Vigorito,&nbsp;Velu Krishnan,&nbsp;Sulie L Chang","doi":"10.1515/nipt-2022-0009","DOIUrl":"https://doi.org/10.1515/nipt-2022-0009","url":null,"abstract":"<p><strong>Objectives: </strong>Interferon Regulatory Factors (IRFs) regulate transcription of type-I interferons (IFNs) and IFN-stimulated genes. We previously reported that IFN-regulatory factor 7 (IRF7) is significantly upregulated in the brain of HIV-1 transgenic (HIV-1Tg) rats compared to F344 control rats in a region dependent manner [Li MD, Cao J, Wang S, Wang J, Sarkar S, Vigorito M, et al. Transcriptome sequencing of gene expression in the brain of the HIV-1 transgenic rat. PLoS One 2013]. The RNA deep-sequencing data were deposited in the NCBI SRA database with Gene Expression Omnibus (GEO) number GSE47474. Our current study utilized QIAGEN CLC Genomics Workbench and Ingenuity Pathway Analysis (IPA) to identify molecular pathways underlying the involvement of IRF7 in the HIV antiviral response.</p><p><strong>Methods: </strong>The differential RNA expression data between HIV-1Tg and F344 rats as well as HAND+ and HIV+ cognitively normal patients was collected from GSE47474 and GSE152416, respectively. The \"Core Expression Data Analysis\" function identified the significant canonical pathways in the datasets with or without IRF7 and its 455 associated molecules.</p><p><strong>Results: </strong>It was found that IRF7 and its 455 associated molecules altered the expression of pathways involving neurotransmission, neuronal survival, and immune function.</p><p><strong>Conclusions: </strong>This <i>in-silico</i> study reveals that IRF7 is involved in the promotion of macrophage activity, neuronal differentiation, the modulation of the Th-1/Th-2 ratio, and the suppression of HIV-1 translation. Furthermore, we demonstrate that bioinformatics tools such as IPA can be employed to simulate the complete knockout of a target molecule such as IRF7 to study its involvement in biological pathways.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"1 1","pages":"23-35"},"PeriodicalIF":0.0,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9923504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10779624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 26th Scientific Conference of the Society on NeuroImmune Pharmacology: College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, June 1-3, 2022 神经免疫药理学学会第26届科学会议:药学院,田纳西大学健康科学中心,田纳西州孟菲斯,2022年6月1日至3日
NeuroImmune pharmacology and therapeutics Pub Date : 2022-03-01 DOI: 10.1515/nipt-2022-0004
Santosh Kumar, C. Dash, G. Pendyala, S. Yelamanchili, S. Maggirwar, J. Bidlack, Sulie L. Chang
{"title":"The 26th Scientific Conference of the Society on NeuroImmune Pharmacology: College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, June 1-3, 2022","authors":"Santosh Kumar, C. Dash, G. Pendyala, S. Yelamanchili, S. Maggirwar, J. Bidlack, Sulie L. Chang","doi":"10.1515/nipt-2022-0004","DOIUrl":"https://doi.org/10.1515/nipt-2022-0004","url":null,"abstract":"Abstract The 26th Scientific Conference of the Society on NeuroImmune Pharmacology (SNIP) at the University of Tennessee Health Science Center in Memphis, Tennessee, June 1-3, 2022, is SNIP’s first full-fledged meeting in person since the onset of the coronavirus disease-19 pandemic. The three-day meeting encompasses a variety of activities that include a pre-conference session, many scientific sessions (eight symposia and two plenary lectures), two special talks, a poster session, oral talks, a mentoring session for early career investigators, a diversity and inclusion SNIP committee session, a business meeting, and an award session. A conference summary, detailed program agenda, accepted poster abstracts, and presentation abstracts are included in this brief report published in advance of the meeting.","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"1 1","pages":"51 - 107"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45076040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“The Galaxy Within” on the cover of NeuroImmune Pharmacology & Therapeutics 《神经免疫药理学与治疗学》封面上的"银河系
NeuroImmune pharmacology and therapeutics Pub Date : 2022-03-01 DOI: 10.1515/nipt-2022-0011
Douglas D Meigs, D. Johnsen
{"title":"“The Galaxy Within” on the cover of NeuroImmune Pharmacology & Therapeutics","authors":"Douglas D Meigs, D. Johnsen","doi":"10.1515/nipt-2022-0011","DOIUrl":"https://doi.org/10.1515/nipt-2022-0011","url":null,"abstract":"Abstract This letter introduces the cover image of the new open-access journal NeuroImmune Pharmacology and Therapeutics (NIPT). The cover image is titled, “The Galaxy Within”, by Dchordpdx (Dustin Johnsen, Ph.D.). This letter also features additional images by Dr. Johnsen and brief discussion of their relevance to neurodegenerative research. The NIPT journal is now accepting submissions for peer-reviewed publication. Article-processing charges will be waived for all submissions in the journal’s first two years of publication. Unsolicited submissions and contributions to special theme issues are welcome. Submission queries may be addressed to the Editor-in-Chief, Dr. Howard E. Gendelman, with correspondence copied to the journal’s editorial office at nipt@unmc.edu.","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"1 1","pages":"3 - 5"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46668230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing NeuroImmune Pharmacology and Therapeutics (NIPT), the official journal of the Society on NeuroImmune Pharmacology (SNIP) 介绍神经免疫药理学和治疗学(NIPT),神经免疫药理学学会(SNIP)的官方期刊
NeuroImmune pharmacology and therapeutics Pub Date : 2022-03-01 DOI: 10.1515/nipt-2022-0007
Sulie L. Chang, H. Gendelman, Santosh Kumar
{"title":"Introducing NeuroImmune Pharmacology and Therapeutics (NIPT), the official journal of the Society on NeuroImmune Pharmacology (SNIP)","authors":"Sulie L. Chang, H. Gendelman, Santosh Kumar","doi":"10.1515/nipt-2022-0007","DOIUrl":"https://doi.org/10.1515/nipt-2022-0007","url":null,"abstract":"","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"1 1","pages":"1 - 2"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49445394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信