Jarne Verhaeghe, Jeroen Van Der Donckt, F. Ongenae, S. Hoecke
{"title":"Powershap: A Power-full Shapley Feature Selection Method","authors":"Jarne Verhaeghe, Jeroen Van Der Donckt, F. Ongenae, S. Hoecke","doi":"10.48550/arXiv.2206.08394","DOIUrl":"https://doi.org/10.48550/arXiv.2206.08394","url":null,"abstract":"Feature selection is a crucial step in developing robust and powerful machine learning models. Feature selection techniques can be divided into two categories: filter and wrapper methods. While wrapper methods commonly result in strong predictive performances, they suffer from a large computational complexity and therefore take a significant amount of time to complete, especially when dealing with high-dimensional feature sets. Alternatively, filter methods are considerably faster, but suffer from several other disadvantages, such as (i) requiring a threshold value, (ii) not taking into account intercorrelation between features, and (iii) ignoring feature interactions with the model. To this end, we present powershap, a novel wrapper feature selection method, which leverages statistical hypothesis testing and power calculations in combination with Shapley values for quick and intuitive feature selection. Powershap is built on the core assumption that an informative feature will have a larger impact on the prediction compared to a known random feature. Benchmarks and simulations show that powershap outperforms other filter methods with predictive performances on par with wrapper methods while being significantly faster, often even reaching half or a third of the execution time. As such, powershap provides a competitive and quick algorithm that can be used by various models in different domains. Furthermore, powershap is implemented as a plug-and-play and open-source sklearn component, enabling easy integration in conventional data science pipelines. User experience is even further enhanced by also providing an automatic mode that automatically tunes the hyper-parameters of the powershap algorithm, allowing to use the algorithm without any configuration needed.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"1 1","pages":"71-87"},"PeriodicalIF":0.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77563693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ARES: Locally Adaptive Reconstruction-based Anomaly Scoring","authors":"Adam Goodge, Bryan Hooi, See-Kiong Ng, W. Ng","doi":"10.48550/arXiv.2206.07604","DOIUrl":"https://doi.org/10.48550/arXiv.2206.07604","url":null,"abstract":"How can we detect anomalies: that is, samples that significantly differ from a given set of high-dimensional data, such as images or sensor data? This is a practical problem with numerous applications and is also relevant to the goal of making learning algorithms more robust to unexpected inputs. Autoencoders are a popular approach, partly due to their simplicity and their ability to perform dimension reduction. However, the anomaly scoring function is not adaptive to the natural variation in reconstruction error across the range of normal samples, which hinders their ability to detect real anomalies. In this paper, we empirically demonstrate the importance of local adaptivity for anomaly scoring in experiments with real data. We then propose our novel Adaptive Reconstruction Error-based Scoring approach, which adapts its scoring based on the local behaviour of reconstruction error over the latent space. We show that this improves anomaly detection performance over relevant baselines in a wide variety of benchmark datasets.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"20 1","pages":"193-208"},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89213332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Summarizing Labeled Multi-Graphs","authors":"Dimitris Berberidis, P. Liang, L. Akoglu","doi":"10.48550/arXiv.2206.07674","DOIUrl":"https://doi.org/10.48550/arXiv.2206.07674","url":null,"abstract":"Real-world graphs can be difficult to interpret and visualize beyond a certain size. To address this issue, graph summarization aims to simplify and shrink a graph, while maintaining its high-level structure and characteristics. Most summarization methods are designed for homogeneous, undirected, simple graphs; however, many real-world graphs are ornate; with characteristics including node labels, directed edges, edge multiplicities, and self-loops. In this paper we propose LM-Gsum, a versatile yet rigorous graph summarization model that (to the best of our knowledge, for the first time) can handle graphs with all the aforementioned characteristics (and any combination thereof). Moreover, our proposed model captures basic sub-structures that are prevalent in real-world graphs, such as cliques, stars, etc. LM-Gsum compactly quantifies the information content of a complex graph using a novel encoding scheme, where it seeks to minimize the total number of bits required to encode (i) the summary graph, as well as (ii) the corrections required for reconstructing the input graph losslessly. To accelerate the summary construction, it creates super-nodes efficiently by merging nodes in groups. Experiments demonstrate that LM-Gsum facilitates the visualization of real-world complex graphs, revealing interpretable structures and high- level relationships. Furthermore, LM-Gsum achieves better trade-off between compression rate and running time, relative to existing methods (only) on comparable settings.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"36 1","pages":"53-68"},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87918419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Defending Observation Attacks in Deep Reinforcement Learning via Detection and Denoising","authors":"Zikang Xiong, Joe Eappen, He Zhu, S. Jagannathan","doi":"10.48550/arXiv.2206.07188","DOIUrl":"https://doi.org/10.48550/arXiv.2206.07188","url":null,"abstract":"Neural network policies trained using Deep Reinforcement Learning (DRL) are well-known to be susceptible to adversarial attacks. In this paper, we consider attacks manifesting as perturbations in the observation space managed by the external environment. These attacks have been shown to downgrade policy performance significantly. We focus our attention on well-trained deterministic and stochastic neural network policies in the context of continuous control benchmarks subject to four well-studied observation space adversarial attacks. To defend against these attacks, we propose a novel defense strategy using a detect-and-denoise schema. Unlike previous adversarial training approaches that sample data in adversarial scenarios, our solution does not require sampling data in an environment under attack, thereby greatly reducing risk during training. Detailed experimental results show that our technique is comparable with state-of-the-art adversarial training approaches.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"9 1","pages":"235-250"},"PeriodicalIF":0.0,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78883023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Manchanda, Sofia Michel, Darko Drakulic, J. Andreoli
{"title":"On the Generalization of Neural Combinatorial Optimization Heuristics","authors":"S. Manchanda, Sofia Michel, Darko Drakulic, J. Andreoli","doi":"10.48550/arXiv.2206.00787","DOIUrl":"https://doi.org/10.48550/arXiv.2206.00787","url":null,"abstract":"Neural Combinatorial Optimization approaches have recently leveraged the expressiveness and flexibility of deep neural networks to learn efficient heuristics for hard Combinatorial Optimization (CO) problems. However, most of the current methods lack generalization: for a given CO problem, heuristics which are trained on instances with certain characteristics underperform when tested on instances with different characteristics. While some previous works have focused on varying the training instances properties, we postulate that a one-size-fit-all model is out of reach. Instead, we formalize solving a CO problem over a given instance distribution as a separate learning task and investigate meta-learning techniques to learn a model on a variety of tasks, in order to optimize its capacity to adapt to new tasks. Through extensive experiments, on two CO problems, using both synthetic and realistic instances, we show that our proposed meta-learning approach significantly improves the generalization of two state-of-the-art models.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"16 1 1","pages":"426-442"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76555711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Rugamer, Andreas Bender, Simon Wiegrebe, Daniel Racek, Bernd Bischl, Christian L. Muller, Clemens Stachl
{"title":"Factorized Structured Regression for Large-Scale Varying Coefficient Models","authors":"David Rugamer, Andreas Bender, Simon Wiegrebe, Daniel Racek, Bernd Bischl, Christian L. Muller, Clemens Stachl","doi":"10.48550/arXiv.2205.13080","DOIUrl":"https://doi.org/10.48550/arXiv.2205.13080","url":null,"abstract":"Recommender Systems (RS) pervade many aspects of our everyday digital life. Proposed to work at scale, state-of-the-art RS allow the modeling of thousands of interactions and facilitate highly individualized recommendations. Conceptually, many RS can be viewed as instances of statistical regression models that incorporate complex feature effects and potentially non-Gaussian outcomes. Such structured regression models, including time-aware varying coefficients models, are, however, limited in their applicability to categorical effects and inclusion of a large number of interactions. Here, we propose Factorized Structured Regression (FaStR) for scalable varying coefficient models. FaStR overcomes limitations of general regression models for large-scale data by combining structured additive regression and factorization approaches in a neural network-based model implementation. This fusion provides a scalable framework for the estimation of statistical models in previously infeasible data settings. Empirical results confirm that the estimation of varying coefficients of our approach is on par with state-of-the-art regression techniques, while scaling notably better and also being competitive with other time-aware RS in terms of prediction performance. We illustrate FaStR's performance and interpretability on a large-scale behavioral study with smartphone user data.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"25 1","pages":"20-35"},"PeriodicalIF":0.0,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82680514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Z. Shi, C. Kamhoua, E. Papalexakis, Fei Fang
{"title":"MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning","authors":"Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Z. Shi, C. Kamhoua, E. Papalexakis, Fei Fang","doi":"10.48550/arXiv.2205.12449","DOIUrl":"https://doi.org/10.48550/arXiv.2205.12449","url":null,"abstract":"Many recent breakthroughs in multi-agent reinforcement learning (MARL) require the use of deep neural networks, which are challenging for human experts to interpret and understand. On the other hand, existing work on interpretable reinforcement learning (RL) has shown promise in extracting more interpretable decision tree-based policies from neural networks, but only in the single-agent setting. To fill this gap, we propose the first set of algorithms that extract interpretable decision-tree policies from neural networks trained with MARL. The first algorithm, IVIPER, extends VIPER, a recent method for single-agent interpretable RL, to the multi-agent setting. We demonstrate that IVIPER learns high-quality decision-tree policies for each agent. To better capture coordination between agents, we propose a novel centralized decision-tree training algorithm, MAVIPER. MAVIPER jointly grows the trees of each agent by predicting the behavior of the other agents using their anticipated trees, and uses resampling to focus on states that are critical for its interactions with other agents. We show that both algorithms generally outperform the baselines and that MAVIPER-trained agents achieve better-coordinated performance than IVIPER-trained agents on three different multi-agent particle-world environments.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"2 1","pages":"251-266"},"PeriodicalIF":0.0,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80667173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Prediction Instability of Graph Neural Networks","authors":"Max Klabunde, F. Lemmerich","doi":"10.48550/arXiv.2205.10070","DOIUrl":"https://doi.org/10.48550/arXiv.2205.10070","url":null,"abstract":"Instability of trained models, i.e., the dependence of individual node predictions on random factors, can affect reproducibility, reliability, and trust in machine learning systems. In this paper, we systematically assess the prediction instability of node classification with state-of-the-art Graph Neural Networks (GNNs). With our experiments, we establish that multiple instantiations of popular GNN models trained on the same data with the same model hyperparameters result in almost identical aggregated performance but display substantial disagreement in the predictions for individual nodes. We find that up to one third of the incorrectly classified nodes differ across algorithm runs. We identify correlations between hyperparameters, node properties, and the size of the training set with the stability of predictions. In general, maximizing model performance implicitly also reduces model instability.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"38 1","pages":"187-202"},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73947934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wasserstein t-SNE","authors":"Fynn Bachmann, Philipp Hennig, Dmitry Kobak","doi":"10.48550/arXiv.2205.07531","DOIUrl":"https://doi.org/10.48550/arXiv.2205.07531","url":null,"abstract":"Scientific datasets often have hierarchical structure: for example, in surveys, individual participants (samples) might be grouped at a higher level (units) such as their geographical region. In these settings, the interest is often in exploring the structure on the unit level rather than on the sample level. Units can be compared based on the distance between their means, however this ignores the within-unit distribution of samples. Here we develop an approach for exploratory analysis of hierarchical datasets using the Wasserstein distance metric that takes into account the shapes of within-unit distributions. We use t-SNE to construct 2D embeddings of the units, based on the matrix of pairwise Wasserstein distances between them. The distance matrix can be efficiently computed by approximating each unit with a Gaussian distribution, but we also provide a scalable method to compute exact Wasserstein distances. We use synthetic data to demonstrate the effectiveness of our Wasserstein t-SNE, and apply it to data from the 2017 German parliamentary election, considering polling stations as samples and voting districts as units. The resulting embedding uncovers meaningful structure in the data.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"134 1","pages":"104-120"},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86326688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Bauw, S. Velasco-Forero, J. Angulo, C. Adnet, O. Airiau
{"title":"Near out-of-distribution detection for low-resolution radar micro-Doppler signatures","authors":"Martin Bauw, S. Velasco-Forero, J. Angulo, C. Adnet, O. Airiau","doi":"10.48550/arXiv.2205.07869","DOIUrl":"https://doi.org/10.48550/arXiv.2205.07869","url":null,"abstract":"Near out-of-distribution detection (OODD) aims at discriminating semantically similar data points without the supervision required for classification. This paper puts forward an OODD use case for radar targets detection extensible to other kinds of sensors and detection scenarios. We emphasize the relevance of OODD and its specific supervision requirements for the detection of a multimodal, diverse targets class among other similar radar targets and clutter in real-life critical systems. We propose a comparison of deep and non-deep OODD methods on simulated low-resolution pulse radar micro-Doppler signatures, considering both a spectral and a covariance matrix input representation. The covariance representation aims at estimating whether dedicated second-order processing is appropriate to discriminate signatures. The potential contributions of labeled anomalies in training, self-supervised learning, contrastive learning insights and innovative training losses are discussed, and the impact of training set contamination caused by mislabelling is investigated.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"90 1","pages":"384-399"},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83909963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}