Journal of the Association of Genetic Technologists最新文献

筛选
英文 中文
Noonan Syndrome: Common Molecular Alterations and the Consequences. 努南综合征:常见的分子改变及其后果。
Casey Rankins, Heather Bradeen, Katherine Devitt, Juli-Anne Gardner
{"title":"Noonan Syndrome: Common Molecular Alterations and the Consequences.","authors":"Casey Rankins,&nbsp;Heather Bradeen,&nbsp;Katherine Devitt,&nbsp;Juli-Anne Gardner","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Noonan syndrome (NS) is a relatively common autosomal dominant disorder with characteristic features and molecular alterations. The most common recurrent alteration is in the PTPN11 gene, a proto-oncogene that encodes a cytoplasmic receptor tyrosine phosphatase and helps regulate kinase activity and control cell survival and replication. Mutations in this gene can increase the risk for the development of multiple different malignancies, particularly hematopoietic. Here we present a case of NS with a PTPN11 mutation demonstrating the classic presentation of Noonan syndrome as well as the expected clinical follow-up.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37729071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A t(8;14)(q24.1;q32) in Plasma Cell Myeloma: A Case Report and Literature Review. A t(8;14)(q24.1;q32)与浆细胞骨髓瘤1例报告及文献复习。
Dapeng Wang, Eduardo Castro, Teresa Guardiola, Krystal Eastwood, Anna Okabe, Diane Zhao, Carlos A Tirado
{"title":"A t(8;14)(q24.1;q32) in Plasma Cell Myeloma: A Case Report and Literature Review.","authors":"Dapeng Wang,&nbsp;Eduardo Castro,&nbsp;Teresa Guardiola,&nbsp;Krystal Eastwood,&nbsp;Anna Okabe,&nbsp;Diane Zhao,&nbsp;Carlos A Tirado","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>We report a 74-year-old male whose bone marrow morphology, flow cytometry, MRI and serum electrophoresis showed evidence of plasma cell myeloma. Chromosome analysis of the bone marrow showed an abnormal karyotype, described as 51~53,XY,+3,+5,t(8;14)(q24 .1;q32),+9,+11,+15,+19,+21[cp6]/46,XY[14]. The t(8;14)(q24.1;q32) is mainly seen in Burkitt lymphoma but it can also be seen in plasma cell myeloma usually with the context of a complex karyotype. Based on the Mitelman database the involvement of C-MYC is usually seen in late tumor progression in plasma cell myeloma as a secondary rearrangement, usually during clonal evolution and divergence and is associated with a significantly decreased survival. Our case pinpoints the involvement of MYC abnormalities in plasma cell myeloma as well as the importance of cytogenetics as a tool to manage and monitor plasma cell myeloma cases.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38688812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel t(10;22) Translocation Harboring an IGL Gene Deletion in a CLL Patient Transforming to B-PLL with 1q Gain. 一个新的t(10;22)易位包含IGL基因缺失在CLL患者转化为B-PLL与1q增益。
Lei Sun, Vinit V Patil, Nathan Wilgus, Jianhui Yao, Jacqueline R Batanian
{"title":"A Novel t(10;22) Translocation Harboring an IGL Gene Deletion in a CLL Patient Transforming to B-PLL with 1q Gain.","authors":"Lei Sun,&nbsp;Vinit V Patil,&nbsp;Nathan Wilgus,&nbsp;Jianhui Yao,&nbsp;Jacqueline R Batanian","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>We report on a rare case of B-cell prolymphocytic leukemia (B-PLL) in a patient with a history of chronic lymphocytic leukemia (CLL) that showed a novel translocation t(10;22)(q21;q11.22) and an interstitial deletion of 11q14.1-q23.3 in 2017. The chromosome microarray analysis (CMA) confirmed the 11q22 deletion and revealed a small interstitial deletion of IGL gene. In 2018, the patient presented with worsening lymphocytosis, anemia and thrombocytopenia. The peripheral blood smear revealed an increased prolymphocyte population, which comprised 60.4% of lymphoid cells, establishing a diagnosis of B-cell prolymphocytic leukemia. The CMA and G-banded chromosome analysis showed one additional aberration in the form of 1q gain translocated onto the other homologue 22. These findings suggested clonal evolution of CLL to B-PLL. The most common translocation involving immunoglobulin lambda chain (IGL) in CLL is the t(18;22), followed by t(8;22) and (11;22). An evolution to B-PLL occurs in most cases without gaining additional aberrations. Here, we report for the first time a novel translocation involving IGL with chromosome 10q21 and one 1q gain occurring in a patient with CLL that transformed to B-PLL. Based on the disease progression and this newly developed cytogenetic aberration, our case supports the progressive nature of CLL in the presence of IGL deletion and suggests the pathological role of 1q gain in CLL transformation.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38033888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isochromosome 17q, a Rare Chromosomal Abnormality in a Female Patient with Pancytopenia. 同染色体17q:全血细胞减少症女性患者罕见的染色体异常。
Felix E Laban, David Shabsovich, David Palencia, Pablo Diaz Piedra, David Trejo, Lorena Villalba, Joy King, Carlos A Tirado
{"title":"Isochromosome 17q, a Rare Chromosomal Abnormality in a Female Patient with Pancytopenia.","authors":"Felix E Laban,&nbsp;David Shabsovich,&nbsp;David Palencia,&nbsp;Pablo Diaz Piedra,&nbsp;David Trejo,&nbsp;Lorena Villalba,&nbsp;Joy King,&nbsp;Carlos A Tirado","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Myelodysplastic syndromes present with a range of cytogenetic abnormalities that are used to guide diagnosis and management of the disease. Herein, we present the case of a 72-year-old female patient who presented with pancytopenia. Peripheral blood showed Hb 9.0 g/dl, neutrophils less than 1800/mm3, and platelets less than 100,000/mm3. Bone marrow showed erythroid hyperplasia, megaloblastic changes, dyserythropoiesis, multinuclearity, nuclear bridges, nuclear budding, atypical mitoses, and ring sideroblasts. Also, CD34 and CD117 as well as myeloperoxidase positive populations were present. On this basis, a diagnosis of myelodysplastic syndrome was rendered. Chromosome studies showed an abnormal female karyotype with an isochromosome 17q as well as deletion 20q in 17 of the 20 metaphase cells examined. The remaining three cells were cytogenetically normal. Molecular cytogenetic studies using a TP53-specific probe showed only one TP53 signal in 87% of the nuclei examined. An i(17q) as a sole cytogenetic aberration is rare among both MDS and myeloid malignancies in general, but is functionally similar to aberrations of 17p that lead to loss of TP53. This case provides further insight into the spectrum of cytogenetic abnormalities present in MDS.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40545459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unbalanced Whole-Arm Translocation der(18;21)(q10;q10) in Hematological Malignancies. 血液系统恶性肿瘤的不平衡全臂易位(18;21)(q10;q10)。
Manisha Brahmbhatt Sutariya, Robin Dawn Clark, Suzanne Wilson, Leidy Vargas, Jun Wang, Paul Herrmann
{"title":"Unbalanced Whole-Arm Translocation der(18;21)(q10;q10) in Hematological Malignancies.","authors":"Manisha Brahmbhatt Sutariya,&nbsp;Robin Dawn Clark,&nbsp;Suzanne Wilson,&nbsp;Leidy Vargas,&nbsp;Jun Wang,&nbsp;Paul Herrmann","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Whole-arm translocations are relatively rare among hematological malignancies. There are a few reports on der(18;21)(q10;q10). This is a recurrent but rare abnormality. Only about 11 cases harboring der(18;21)(q10;q10) have been reported. However, combined der(18;21) (q10;q10) and gain of chromosome 21 is even rarer, with only three cases reported. The previous cases were with AML, AML-M2, and aCML diagnosis. We report the first case of Ph-like, B-lymphoblastic leukemia (B-ALL) with +21 and der(18;21)(q10;q10) which resulted in loss of 18p and a gain of 21q. We address tumorigenesis and morphological characteristics of hematological malignancies involving der(18;21)(q10;q10), along with a review of the literature.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40455296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delineating the Complex Genomic Landscape of Multiple Myeloma Using Next-Generation Sequencing (NGS): Progress and Potential to Supersede Traditional Genetic Testing. 利用下一代测序(NGS)描绘多发性骨髓瘤的复杂基因组景观:进展和取代传统基因检测的潜力。
Jaime Garcia-Heras
{"title":"Delineating the Complex Genomic Landscape of Multiple Myeloma Using Next-Generation Sequencing (NGS): Progress and Potential to Supersede Traditional Genetic Testing.","authors":"Jaime Garcia-Heras","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Recent NGS studies in multiple myeloma identified in one step and with comparable high accuracy to the concurrent cytogenomic tests the characteristic IGH translocations and copy number abnormalities. In addition, NGS allowed detection of gene mutations. This unprecedented success of a comprehensive genomic analysis suggests the possibility of replacing the separate tests in current use (cytogenetics, FISH, SNPs microarray and mutation analysis) with a single more efficient NGS assay. Down the road, NGS appears to have the potential to improve routine patient care with the clinical application of a detailed genomic profile.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40454867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Case of t(1;6)(p12;p11.1), Deletion 5q, and Ring 11 in a Patient with Myelodysplastic Syndrome with Excess Blasts Type 1. t(1;6)(p12;p11.1)、5q缺失和环11在1型骨髓增生异常综合征患者中的一例
Anna Okabe, David Palencia, David Shabsovich, Alberto Duarte, Angelica Lopez, Carlos A Tirado
{"title":"A Case of t(1;6)(p12;p11.1), Deletion 5q, and Ring 11 in a Patient with Myelodysplastic Syndrome with Excess Blasts Type 1.","authors":"Anna Okabe,&nbsp;David Palencia,&nbsp;David Shabsovich,&nbsp;Alberto Duarte,&nbsp;Angelica Lopez,&nbsp;Carlos A Tirado","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>We present the case of a 56-year-old male with myelodysplastic syndrome (MDS) whose bone marrow immunophenotype showed lower positivity for CD45 and positivity for CD34; 8.66% of this population also expressed partial positives for MPO, CD16, CD117, CD36, CD33, and CD71, as well as positives for CD13, HLA-DR, and CD11b. No alterations in the pattern of maturation were seen in CD13 vs CD16 and CD13 vs CD11b. An analysis of a population of mature lymphocytes revealed CD45 high CD3+ in 87.5% of cells, CD45 high CD19+ in 7.6% of cells, and 4.9% NK cells. These results are consistent with a myelodysplastic syndrome with an excess of blasts type 1. Chromosome analysis of the bone marrow revealed an abnormal karyotype with a t(1;6)(p12;p11.1) as well as deletion 5q and a ring 11 in 12 of the 20 metaphase cells examined. The t(1;6)(p12;p11.1) has not been reported in association with any particular hematological malignancy and provides further insight into the range of cytogenetic abnormalities in MDS.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40554401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Cytogenetic Characterization of a Complex Karyotype of a Pediatric Male Patient with B-Acute Lymphoblastic Leukemia. 一名儿童男性b急性淋巴细胞白血病患者复杂核型的分子细胞遗传学特征。
Andrew M Nguyen, Vincent Tse, Katherine Lapp, Grace Yang, Karen Cunnien, Diane Serk, Carlos A Tirado
{"title":"Molecular Cytogenetic Characterization of a Complex Karyotype of a Pediatric Male Patient with B-Acute Lymphoblastic Leukemia.","authors":"Andrew M Nguyen,&nbsp;Vincent Tse,&nbsp;Katherine Lapp,&nbsp;Grace Yang,&nbsp;Karen Cunnien,&nbsp;Diane Serk,&nbsp;Carlos A Tirado","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>B-Acute lymphoblastic leukemia (B-ALL) is a malignant disease that arises from several cooperative genetic mutations in a single B-lymphoid progenitor, leading to altered blast cell proliferation, survival and maturation, and eventually the lethal accumulation of leukemic cells. B-ALL accounts for about 12% of all childhood and adult leukemias diagnosed in developed countries, and 60% of those diagnosed are patients younger than 20 years old. As the most common cancer in children (25% of all cases) with a peak incidence in patients between the ages of two and five years, with a second, smaller peak in the elderly, the factors predisposing children and adults to ALL remain largely unknown. Herein we present an eight-year-old male patient diagnosed with B-ALL. Chromosome studies of 20 G-banded metaphases of the bone marrow detected an abnormal male karyotype with loss of 9p [i(9)(q10)] and loss of 17p [der(17)(?::17q11.2->17p11.2::17p11.2->17qter)] within the context of a complex karyotype in eight metaphase cells. Four of these abnormal metaphases showed additional material of unknown origin on chromosome 12 at p11.2 [add(12)(p11.2)]. Metaphase FISH analysis was crucial to characterize such complex chromosomal abnormalities, underscoring the importance of molecular cytogenetics in characterizing complex karyotypes in this hematological malignancy.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37729072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T-Cell Acute Lymphoblastic Leukemia: A Cytogenomic Update. t细胞急性淋巴母细胞白血病:细胞基因组学最新进展。
Andrew M Nguyen, Anna Okabe, Vincent Tse, Carlos A Tirado
{"title":"T-Cell Acute Lymphoblastic Leukemia: A Cytogenomic Update.","authors":"Andrew M Nguyen,&nbsp;Anna Okabe,&nbsp;Vincent Tse,&nbsp;Carlos A Tirado","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>T-cell acute lymphoblastic leukemia (T-ALL) is a pervasive hematologic malignancy that arises from developmental and genetic abnormalities manifested in lymphoblasts belonging to the T-cell lineage. Responsible for 10-15% of pediatric acute lymphoblastic leukemia (ALL) and 25% of adult ALL patients, T-ALL is characterized not only by cytomorphic features, but also by the aberrant expression of specific genes critical to T-cell development. Such changes in the genome ultimately result in mutational and developmental cascades that alter the chromosomal constitution, the process of which are used to organize T-ALL cases into different subgroups according to specific gene expression signatures. Clinically, comprehensive categorizations are important in risk stratification, assessment, and treatment protocols. Notable genetic subgroups include that of TAL, TLX1, TLX3, HOXA, MYB, ETP and NKX2. Current research also recognizes phenotypic and immunologic categories, such as ALK-positive ALCL, ALK-negative ALCL, BIA ALCL, AITL, and PTCL, NOS, which has revolutionized our understanding of T-cell lymphoma. Furthermore, it has been suggested that most T-ALL patients present with abnormal NOTCH1 genes in addition to mutations involving the JAK-STAT signaling pathway. These abnormalities are associated with the regulatory malfunction of T-cell development as well as that of their respective tumor suppressors and oncogenes. While recent studies have revealed characteristic defects in T-ALL, the interactions between oncogenes and their tumor suppressors with leukemia development are not well known as the signaling pathways involved behind each genetic lesion have yet to be fully explored. Studies involving FISH, RT-PCR, aCGH, and NGS offer novel perspectives to potentially learn more about the pathogenesis and cytogenetics of T-ALL, a field that demands further attention and research.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38034438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute Myeloid Leukemia with t(6;9)(p23;q34.1); DEK-NUP214: The Pathogenesis and Potential. 急性髓系白血病伴t(6;9)(p23;q34.1);DEK-NUP214:发病机制和潜力。
Juli-Anne Gardner, Liam Donnelly, Rebecca Goetz, Brianna Waller, Katherine Devitt
{"title":"Acute Myeloid Leukemia with t(6;9)(p23;q34.1); DEK-NUP214: The Pathogenesis and Potential.","authors":"Juli-Anne Gardner,&nbsp;Liam Donnelly,&nbsp;Rebecca Goetz,&nbsp;Brianna Waller,&nbsp;Katherine Devitt","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objectives: </strong>Acute myeloid leukemia (AML) is caused by the arrested differentiation and dysregulated proliferation of myeloid precursors. Many AMLs harbor genetic abnormalities which determine the molecular mechanisms of the disease and are associated with distinct clinical and pathological features, prognosis, and targeted therapies. We present a case of acute myeloid leukemia with t(6;9)(p23;q34.1) and review the classic clinical presentations and underlying pathogenesis of the disease.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38034437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信