Advances in Physics: X最新文献

筛选
英文 中文
William Shakespeare’s advice on our journal 威廉·莎士比亚对我们日记的建议
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-07-26 DOI: 10.1080/23746149.2022.2099635
Richard E Palmer
{"title":"William Shakespeare’s advice on our journal","authors":"Richard E Palmer","doi":"10.1080/23746149.2022.2099635","DOIUrl":"https://doi.org/10.1080/23746149.2022.2099635","url":null,"abstract":"","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45318222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological data analysis and machine learning 拓扑数据分析和机器学习
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-06-30 DOI: 10.1080/23746149.2023.2202331
D. Leykam, D. Angelakis
{"title":"Topological data analysis and machine learning","authors":"D. Leykam, D. Angelakis","doi":"10.1080/23746149.2023.2202331","DOIUrl":"https://doi.org/10.1080/23746149.2023.2202331","url":null,"abstract":"ABSTRACT Topological data analysis refers to approaches for systematically and reliably computing abstract ‘shapes’ of complex data sets. There are various applications of topological data analysis in life and data sciences, with growing interest among physicists. We present a concise review of applications of topological data analysis to physics and machine learning problems in physics including the unsupervised detection of phase transitions. We finish with a preview of anticipated directions for future research. Graphical abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":"8 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60110725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Optical tweezers for a bottom-up assembly of few-atom systems 用于自底向上组装少原子系统的光镊子
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-05-19 DOI: 10.1080/23746149.2022.2064231
M. Andersen
{"title":"Optical tweezers for a bottom-up assembly of few-atom systems","authors":"M. Andersen","doi":"10.1080/23746149.2022.2064231","DOIUrl":"https://doi.org/10.1080/23746149.2022.2064231","url":null,"abstract":"ABSTRACT Tightly focused laser beams form optical tweezers that can hold and manipulate individual atoms. They give superb control over microscopic quantum systems and have paved the way for bottom up assembly of few-atom systems. Such assembled systems provide an ideal starting point for many fundamental studies of atomic interactions and few-atom phenomena. Here we review the present stage of these fields, as well as some of the basic experimental techniques required for these experiments Figure from [74]. GRAPHICAL ABSTRACT","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47005643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A review on non-Hermitian skin effect 非厄米集肤效应研究进展
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-05-17 DOI: 10.1080/23746149.2022.2109431
Xiujuan Zhang, Tian Zhang, Ming-Hui Lu, Yan-Feng Chen
{"title":"A review on non-Hermitian skin effect","authors":"Xiujuan Zhang, Tian Zhang, Ming-Hui Lu, Yan-Feng Chen","doi":"10.1080/23746149.2022.2109431","DOIUrl":"https://doi.org/10.1080/23746149.2022.2109431","url":null,"abstract":"ABSTRACT The past decades have witnessed the flourishing of non-Hermitian physics in non-conservative systems, leading to unprecedented phenomena of unidirectional invisibility, enhanced sensitivity and more recently the novel topological features such as bulk Fermi arcs. Among them, growing efforts have been invested to an intriguing phenomenon, known as the non-Hermitian skin effect (NHSE). Here, we review the recent progress in this emerging field. By starting from the one-dimensional (1D) case, the fundamental concepts of NHSE, its minimal model, the physical meanings and consequences are elaborated in details. In particular, we discuss the NHSE enriched by lattice symmetries, which gives rise to unique non-Hermitian topological properties with revised bulk-boundary correspondence (BBC) and new definitions of topological invariants. Then we extend the discussions to two and higher dimensions, where dimensional surprises enable even more versatile NH.SE phenomena. Extensions of NHSE assisted with extra degrees of freedom such as long-range coupling, pseudospins, magnetism, non-linearity and crystal defects are also reviewed. This is followed by the contemporary experimental progress for NHSE. Finally, we provide the outlooks to possible future directions and developments. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48603368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 61
Quantum transport in topological nodal-line semimetals 拓扑节点线半金属中的量子输运
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-05-02 DOI: 10.1080/23746149.2022.2065216
Min Yang, Wei Luo, Wei Chen
{"title":"Quantum transport in topological nodal-line semimetals","authors":"Min Yang, Wei Luo, Wei Chen","doi":"10.1080/23746149.2022.2065216","DOIUrl":"https://doi.org/10.1080/23746149.2022.2065216","url":null,"abstract":"ABSTRACT Topological nodal-line semimetals offer an attractive research platform for exploring a variety of novel phenomena, which have attracted great research interest in the past decade. There are three unique features of the nodal-line semimetals: (i) band crossing along the closed loop that carries Berry phase, (ii) torus-shaped Fermi surface as the Fermi energy deviates from the nodal loop, and (iii) drumhead-like surface states induced by the band topology, which comprise the main scenarios for most of its electronic properties. Here, we review recent progress on the quantum transport theory of nodal-line semimetals. We show that the properties (i) and (ii) result in a fascinating interplay between the effective dimensionality of electron diffusion and the band topology, which may give rise to 3D weak localization or 2D weak anti-localization effect that can be probed by the magnetoconductivity induced by a weak magnetic field. Moreover, (i) and (ii) can also be revealed by the pattern of the Shubnikov–de Hass oscillation in a strong magnetic field. For the massive nodal-line semimetals with spin-orbit coupling, we show that the magnetic field can induce a topological Lifshitz transition of the Fermi torus from genus 1 to 0. Interestingly, the Lifshitz transition is in good coincidence with the sign reversal of the magnetoresistivity. Compared to the conventional Fermi sphere, the Fermi torus possesses multiple reflection channels, which may give rise to novel scattering processes such as anomalous Andreev reflection at the interface between the semimetal and a superconductor. Besides the bulk states, the drumhead surface states also possess interesting properties. It is shown that the spin polarization of the surface states can induce resonant spin-flipped reflection, which can be detected through both spin and charge transport measurements. We also briefly review the recent experimental progress on the transport properties of nodal-line semimetals and compare the results with the theoretical predictions. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47937786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Frequency domain interferometry for measuring ultrafast refractive index modulation and surface deformation 用于测量超快折射率调制和表面变形的频域干涉测量法
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-04-26 DOI: 10.1080/23746149.2022.2065218
R. R. Tamming, J. Hodgkiss, Kai Chen
{"title":"Frequency domain interferometry for measuring ultrafast refractive index modulation and surface deformation","authors":"R. R. Tamming, J. Hodgkiss, Kai Chen","doi":"10.1080/23746149.2022.2065218","DOIUrl":"https://doi.org/10.1080/23746149.2022.2065218","url":null,"abstract":"ABSTRACT Ultrafast optical spectroscopy delivers unparalleled insights into the dynamic response of photoactive materials, including semiconducting, photonic and phase-change materials. The most applied experimental tool – transient absorption spectroscopy – derives signals from induced changes in the intensity of transmitted light, assumed to relate to the imaginary part of the refractive index. However, the entire complex refractive index of materials changes in the excited state; changes in the real part of the refractive index can have significant effects on transient absorption spectra and the function of optical devices. In this review, we introduce an emerging ultrafast spectroscopy method – frequency domain interferometry. This simple adaptation of transient absorption spectroscopy provides a model-independent means of spectrally resolving photoinduced changes in a materials refractive index. After introducing the theory and implementation of the method, we describe several case studies, including the optical response of metal-halide perovskites and phase modulators, and surface displacement of phase-change materials. Finally, we describe recent and future improvements that can enhance the time-resolution and signal sensitivity of this technique. The advances and applications highlighted in this review demonstrate the potential of the method to become a standard part of the ultrafast spectroscopy toolbox for characterising optoelectronic and photonic materials and devices. GRAPHICAL ABSTRACT","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42661236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Berry phase in quantum oscillations of topological materials 拓扑材料量子振荡中的Berry相
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-04-20 DOI: 10.1080/23746149.2022.2064230
Weiyao Zhao, Xiaolin Wang
{"title":"Berry phase in quantum oscillations of topological materials","authors":"Weiyao Zhao, Xiaolin Wang","doi":"10.1080/23746149.2022.2064230","DOIUrl":"https://doi.org/10.1080/23746149.2022.2064230","url":null,"abstract":"ABSTRACT Quantum oscillation is an important phenomenon in low temperature transport studies of topological materials. In three-dimensional topological insulators, Dirac semimetals, Weyl semimetals, and other topological nontrivial materials, the topologically nontrivial band structure will add a phase correction to the quantum oscillation patterns, which is known as the nontrivial Berry phase. Berry phase analysis via quantum oscillation is a powerful method to investigate the nontrivial band topology of topological materials. In this review, we introduce the concepts of the Berry phase and quantum oscillations, and provide some classification of topological materials. We then employ some important studies on each type of topological material to discuss the nontrivial Berry phase. We conclude by pointing out the importance of quantum transport studies on topological materials, as well as drawing attention to the exploration of the nontrivial Berry phase in a new material system that could shed more light on the topology-based electronics. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44928390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Interatomic potentials: achievements and challenges 原子间潜能:成就与挑战
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-04-20 DOI: 10.1080/23746149.2022.2093129
M. Muser, S. Sukhomlinov, L. Pastewka
{"title":"Interatomic potentials: achievements and challenges","authors":"M. Muser, S. Sukhomlinov, L. Pastewka","doi":"10.1080/23746149.2022.2093129","DOIUrl":"https://doi.org/10.1080/23746149.2022.2093129","url":null,"abstract":"Interatomic potentials approximate the potential energy of atoms as a function of their coordinates. Their main application is the effective simulation of many-atom systems. Here, we review empirical interatomic potentials designed to reproduce elastic properties, defect energies, bond breaking, bond formation, and even redox reactions. We discuss popular two-body potentials, embedded-atom models for metals, bond-order potentials for covalently bonded systems, polarizable potentials including charge-transfer approaches for ionic systems and quantum-Drude oscillator models mimicking higher-order and many-body dispersion. Particular emphasis is laid on the question what constraints ensue from the functional form of a potential, e.g., in what way Cauchy relations for elastic tensor elements can be violated and what this entails for the ratio of defect and cohesive energies, or why the ratio of boiling to melting temperature tends to be large for potentials describing metals but small for short-ranged pair potentials. The review is meant to be pedagogical rather than encyclopedic. This is why we highlight potentials with functional forms sufficiently simple to remain amenable to analytical treatments. Our main objective is to provide a stimulus for how existing approaches can be advanced or meaningfully combined to extent the scope of simulations based on empirical potentials.","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46558835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Properties and applications of quantum dots derived from two-dimensional materials 二维材料衍生量子点的性质与应用
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-04-17 DOI: 10.1080/23746149.2022.2048966
H. Abdelsalam, Q. Zhang
{"title":"Properties and applications of quantum dots derived from two-dimensional materials","authors":"H. Abdelsalam, Q. Zhang","doi":"10.1080/23746149.2022.2048966","DOIUrl":"https://doi.org/10.1080/23746149.2022.2048966","url":null,"abstract":"ABSTRACT Quantum dots based on two-dimensional materials (2D-QDs) have received significant attention due to their exceptional physical, chemical, and biological properties. They have shown unprecedented performance and efficiency in many fields including electronics, spintronics, energy, water treatment, sensors, and biological applications. This article provides a critical review on the recent progress of 2D-DQs, their synthesis approaches, categories, properties, and applications. The review introduces various types of 2D-QDs, such as graphene, hBN, silicene, phosphorene, transition metal dichalcogenides, and MXenes that show a wide range of properties applicable for different fields. We describe in detail the electronic, magnetic, optical, catalytic, and biological properties of 2D-QDs and relate them to the suitable applications. Future directions for the research in 2D-QDs are given based on the novel properties provided by the newly discovered 2D materials and their heterostructures. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46071850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Electromagnetically induced transparency quantum memory for non-classical states of light 非经典光态的电磁感应透明量子存储器
IF 6 2区 物理与天体物理
Advances in Physics: X Pub Date : 2022-04-17 DOI: 10.1080/23746149.2022.2060133
Xing Lei, Lixia Ma, Jieli Yan, Xiaoyu Zhou, Zhihui Yan, X. Jia
{"title":"Electromagnetically induced transparency quantum memory for non-classical states of light","authors":"Xing Lei, Lixia Ma, Jieli Yan, Xiaoyu Zhou, Zhihui Yan, X. Jia","doi":"10.1080/23746149.2022.2060133","DOIUrl":"https://doi.org/10.1080/23746149.2022.2060133","url":null,"abstract":"ABSTRACT Quantum memory (QM) enables quantum state mapping between flying and stationary quantum states and is the building block of quantum information science, which enables to achieve a plethora of quantum information protocols, such as quantum state transfer across remote quantum nodes, distributed quantum logic gate, and quantum precession measurement network. Great progresses of quantum memories have been achieved, and electromagnetically induced transparency (EIT) is one of the well-understood approaches of QM. Quantum states of light are the essential quantum resources for implementing quantum enhanced task, and thus it is a long-standing goal to store and release non-classical states of light. This paper presents an up-to-date review on recent developments in EIT-based QM: EIT quantum memories have been realized in warm atomic cell, cold atoms and solid system, respectively; and EIT mechanism has been applied to store and release single photon, squeezed state, entangled photon pairs and multipartite entangled states of optical modes. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43887035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信