Advances in Natural Sciences: Nanoscience and Nanotechnology最新文献

筛选
英文 中文
“Antimicrobial resistance in fowl production: cutting-edge status and innovative strategies for bacterial manipulate” 家禽生产中的抗菌素耐药性:细菌控制的前沿地位和创新策略
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-10-30 DOI: 10.33140/ann.07.01.03
{"title":"“Antimicrobial resistance in fowl production: cutting-edge status and innovative strategies for bacterial manipulate”","authors":"","doi":"10.33140/ann.07.01.03","DOIUrl":"https://doi.org/10.33140/ann.07.01.03","url":null,"abstract":"The significant increase in the world population has also led to an increase in the Consumption of poultry products, which must meet certain requirements while maintaining Their quality and safety. It is known that in animal production, including poultry, antibiotics (Antibiotics) are used as preventive measures to prevent or treat infectious diseases. Unfortunately, the use and abuse of these compounds has led to the development and Dissemination of antibiotics, which is a major public health problem today. The number of Resistant bacteria is increasing and causing serious harm to humans and animals; Therefore, The aim of this review is to discuss the formation of antibiotics in poultry, focusing on the Current situation in the agricultural sector. New disease control strategies based on research Used in this sector are also described.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"70 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136132961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surfactant Modified Bentonite Characterization: Effects and Comparative Analysis 表面活性剂改性膨润土的表征、效果及对比分析
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-10-30 DOI: 10.33140/ann.07.01.02
{"title":"Surfactant Modified Bentonite Characterization: Effects and Comparative Analysis","authors":"","doi":"10.33140/ann.07.01.02","DOIUrl":"https://doi.org/10.33140/ann.07.01.02","url":null,"abstract":"Extensive soils can be found all over the world. The clay mineral montmorillonite is predominantly responsible for soil expansion. Because of their ability to shrink and swell with seasonal changes in moisture content, these expansive soils can cause significant damage to engineering construction. To stabilize the effects of swelling soil various ground improvement techniques, incorporate mineralogical modification of clays. The application of nanotechnology increased in past few years to deal with clay minerals as it possesses the same dimensional properties. To understand the behaviour of Nano modified clay, bentonite was selected as it represents the montmorillonite clay mineral. The characterization of surface-treated bentonite by nanomaterial was carried out. The study of physio-chemical properties and textural properties of surface-modified bentonite clay was carried out. Swelling pressure was evaluated by a consolidometer test. With the advanced nanotechnology instrumentation technique, particle size analysis, zeta potential, wettability, contact angle, infra-red spectroscopy, rheological properties, BET surface area, pH values, XRD, TGA, etc was carried out for treated and untreated soil, to understand the comparative behaviour of surface modification. It was found that by using Nano surfactant, liquid limit and shrinkage limit were reduced considerably. The increase in the quantity of surfactant increases the d-spacing. Thermal stability and particle size increase after surface treatment of bentonite clay. Soil reaches a visco-elastic state and BET surface area decreased after surface modification.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136132958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Modern Formulation Approaches for Protein Based Drug Delivery 蛋白质给药的现代配方方法综述
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-10-30 DOI: 10.33140/ann.07.01.04
{"title":"A Review on Modern Formulation Approaches for Protein Based Drug Delivery","authors":"","doi":"10.33140/ann.07.01.04","DOIUrl":"https://doi.org/10.33140/ann.07.01.04","url":null,"abstract":"Protein and Peptide drugs have great emerging applications as healing agents because they have higher efficacy and less toxicity than chemical drugs. However, difficulty in their delivery has limited their use. In particular, their oral bioavailability and stability is very low, and non-invasive drug delivery route such as nasal, pulmonary and transdermal delivery faces absorption limitations. Therefore, the promising way of protein-based drug delivery is parenteral route. However, this route also has some problems like poor patient compliance, pain, and dermal discomfort. So, structure based nanocarriers design for drug delivery is developing nowadays and has illustrated the fewer side effects and better usefulness in disease treatment than free drug molecules. A modish nanocarriers offer site specific drug delivery in controlled fashion against all the physiological barriers and is ultimately metabolized in the body. This review will discuss the various nano-formulation strategies for biomacromolecules delivery.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"70 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136132960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of titanium dioxide nanoparticles using Thymus vulgaris leaf extract for biological applications 利用普通胸腺叶提取物绿色合成纳米二氧化钛的生物应用
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-09-01 DOI: 10.1088/2043-6262/acf2ed
Mangala K J
{"title":"Green synthesis of titanium dioxide nanoparticles using Thymus vulgaris leaf extract for biological applications","authors":"Mangala K J","doi":"10.1088/2043-6262/acf2ed","DOIUrl":"https://doi.org/10.1088/2043-6262/acf2ed","url":null,"abstract":"In the last few decades, the biosynthesis of nanoparticles using biological agents such as microorganisms or plant extracts has gained a lot of attention due to the growing need for generating safe and non-toxic substances, cost-effective techniques, ecologically friendly solvents, and renewable materials. The aqueous leaf extract of Thymus vulgaris was used in the current investigation to achieve the biosynthesis of TiO2 nanoparticles (TiO2 NPs). In this study, leaf extract was used as a size-reducer in synthesis of TiO2. Thyme leaf extract contains flavonoids, phenols, and saponins, which function as both reducing and stabilising agents and are crucial for the synthesis of TiO2 nanoparticles. Methods such as Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS), x-ray diffraction (XRD), photoluminescence (PL), and scanning electron microscopy (SEM) with energy dispersive x-ray (EDX) were used to characterise TiO2 NPs. The XRD investigations showed that titanium dioxide nanoparticles are crystalline and average crystal size is 28 nm. Gram-positive bacteria like S. aureus and B. subtilis as well as Gram-negative bacteria like Pseudomonas aeruginosa were used as standardised test microbial inoculums to evaluate the antibacterial properties of biosynthesised nanoparticles (TiO2 NPs). Against each of the studied bacteria, the TiO2 nanoparticles demonstrated significant antimicrobial activity. TiO2 nanoparticles had the maximum activity against Staphylococcus aureus, with an inhibitory zone diameter of 14 mm at 100 g ml−1. By using DPPH, hydroxyl radical techniques, the comprehensive antioxidant activity of produced NPs was examined.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47754112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A LED visible-light-driven photocatalytic decontamination of azo dyes using Ag/ZnO heterojunction 利用Ag/ZnO异质结对偶氮染料进行LED可见光催化净化
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-09-01 DOI: 10.1088/2043-6262/acf2ee
N. Vo, V. Pham
{"title":"A LED visible-light-driven photocatalytic decontamination of azo dyes using Ag/ZnO heterojunction","authors":"N. Vo, V. Pham","doi":"10.1088/2043-6262/acf2ee","DOIUrl":"https://doi.org/10.1088/2043-6262/acf2ee","url":null,"abstract":"An emerging study is an Ag/ZnO heterojunction photocatalyst for the decomposition prospect of azo dyes in wastewater under visible light. Herein, spherical nanoparticles of the Ag/ZnO of 20–50 nm are synthesised via a green chemical method from a rosin agent. Combining Ag nanoparticles (NPs) and ZnO NPs extended the photoactivity range via a surface plasmon resonance (SPR) of Ag NPs at a wavelength of 450–500 nm region. Consequently, the visible light photocatalytic degradation performance of Ag/ZnO for MO and phenol removal is 80.92% and 44.15%, respectively after 6 h of LED lamp illumination. The high stability of the Ag/ZnO is achieved by approximately 60% after three times of the photocatalytic test.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42419264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green nanosilica and highly efficient removal of methylene blue 绿色纳米二氧化硅与亚甲基蓝的高效去除
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-09-01 DOI: 10.1088/2043-6262/acf28b
P. Thuadaij, S. Yodyingyong
{"title":"Green nanosilica and highly efficient removal of methylene blue","authors":"P. Thuadaij, S. Yodyingyong","doi":"10.1088/2043-6262/acf28b","DOIUrl":"https://doi.org/10.1088/2043-6262/acf28b","url":null,"abstract":"A new precipitation method has been developed for improving the production of nanosilica that is faster and more environmentally friendly. The study investigates the effects of different acid types and concentrations, as well as aging times, to determine the optimal conditions for preparing nanosilica from sugarcane bagasse ash (SCBA). Nanosilica synthesised with citric acid exhibits a higher specific surface area (554.01 m2 g−1) and yield (88.54%) compared to those synthesised with sulfuric, oxalic, and acetic acids. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images show that the synthesised nanosilica has an amorphous silica phase with a particle diameter of approximately 5.6 nm. The applicability of the synthesised nanosilica as an adsorbent for methylene blue (MB) is studied. Various conditions such as adsorbent dosage, contact time, and initial concentration of MB are evaluated. The results reveal that the synthesised nanosilica has a high adsorption capacity (232.29 mg g−1) and removal efficiency (R%) of 90% for MB. The experimental results align with the Freundlich model and can be used for effective dye removal. The development of a simple and environmentally friendly method for synthesising nanosilica with superior adsorption properties is an important contribution to the field of waste management and provides a useful tool for tackling environmental pollution caused by organic dyes.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47260455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-engineered, phyto-decorated, multi-form P. betle/ZnO as a potential photocatalytic agent 生物工程、植物修饰、多种形式的贝类/氧化锌作为潜在的光催化剂
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-09-01 DOI: 10.1088/2043-6262/acf28a
J. Gaur, Sanjeev Kumar, M. Pal, H. Kaur, Supreet, R. Badru, J. Momoh, R. Pal, Sunil Kumar
{"title":"Bio-engineered, phyto-decorated, multi-form P. betle/ZnO as a potential photocatalytic agent","authors":"J. Gaur, Sanjeev Kumar, M. Pal, H. Kaur, Supreet, R. Badru, J. Momoh, R. Pal, Sunil Kumar","doi":"10.1088/2043-6262/acf28a","DOIUrl":"https://doi.org/10.1088/2043-6262/acf28a","url":null,"abstract":"The rising levels of water contamination worldwide signal a significant need for new materials for its restoration in the coming years. This study provides a novel, simple, cost-effective, and environmentally friendly approach for the production of zinc oxide (ZnO) nanoparticles (NPs) as a promising photocatalyst through the reduction of zinc nitrate hexahydrate using a leaf extract of Piper betle (P. betle). The wurtzite hexagonal structure of ZnO, with a crystallite diameter of 43.44 nm and an energy band gap of 2.97 eV, was seen in P. betle/ZnO. The Fourier transform infrared (FTIR) study showed that phytochemicals from the P. betle extract were present on the surface of P. betle/ZnO. The high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM) analyses revealed the existence of multiple structures scattered evenly (spherical, hexagonal, and rod-shaped). The BET findings indicate that P. betle/ZnO NPs have a highly porous structure with a significant surface area of 97.11 m2/g. The degradation of commercial dye was employed to evaluate the photocatalytic capability of P. betle/ZnO. With ultraviolet radiation, the removal percentage of light green dye might surpass 99% in 80 min with a degradation rate of 2.58 × 10−2 min−1. It was observed that the degradation kinetics follow pseudo-first-order kinetics. P. betle/ZnO is acknowledged as an effective photocatalyst for the treatment of commercial effluent.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45599319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quercetin nanoformulations: recent advancements and therapeutic applications 槲皮素纳米制剂:最新进展和治疗应用
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-09-01 DOI: 10.1088/2043-6262/acedaa
Simrandeep Kaur, Ayushi Goyal, Arya Rai, Akshay Sharma, K. Ugoeze, Inderbir Singh
{"title":"Quercetin nanoformulations: recent advancements and therapeutic applications","authors":"Simrandeep Kaur, Ayushi Goyal, Arya Rai, Akshay Sharma, K. Ugoeze, Inderbir Singh","doi":"10.1088/2043-6262/acedaa","DOIUrl":"https://doi.org/10.1088/2043-6262/acedaa","url":null,"abstract":"Quercetin is a natural bioflavonoid and is an inevitable part of a person’s daily diet. It exhibits anti-inflammatory, anti-oxidant, anti-cancer, anti-microbial effects and is used for the treatment of several diseases like cancer, cardiovascular ailments, and microbial infections. The major limitations of quercetin are low water solubility, less chemical stability, low bioavailability, and short biological half-life. All these major drawbacks can be overcome by its encapsulation in various nanocarriers (nanoparticles, nanoliposomes, nanocrystals, nanomicelles, etc). Such quercetin encapsulated nanoformulations displayed enhanced solubility, stability, bioavailability, high encapsulation efficiency, controlled drug release and extended systemic circulation time period. Quercetin loaded nanocarriers can easily pass across different barriers like blood brain barrier (BBB), skin barriers, mucosal membrane, hence providing target site specific delivery. They also exhibited improved therapeutic effects such as enhanced anti-cancer, anti-diabetic, anti-microbial, anti-inflammatory, anti-psoriasis, anti-oxidant, anti-asthmatic, anti-acne, skin-whitening, hepatoprotective, photoprotective, neuroprotective, nephroprotective and cardioprotective actions. Major health issues associated with nanoformulations are risk of cytotoxicity, oxidative stress, DNA damage, and mutations that can be minimised with continual advancements in nanotechniques. The present review discusses quercetin, its historical background, pharmacokinetics, mechanism of action, and therapeutic applications with major emphasis on the quercetin nanoformulations such as nanoparticles, nanoemulsions, nanoliposomes, nanocrystals, nanosuspensions and nanomicelles that enhances its physicochemical stability, solubility, and therapeutic applications. Also this review includes different quercetin nanoformulations developed for colon cancer and colorectal cancer treatment, brief description of pre-clinical & clinical studies, toxicological concerns, challenges & opportunities, future aspects, patents and marketed quercetin products.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43050799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical and optical-based systems for SARS-COV-2 and various pathogens assessment 用于严重急性呼吸系统综合征冠状病毒2型和各种病原体评估的电化学和光学系统
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-08-17 DOI: 10.1088/2043-6262/aceda9
Shahzad Ahmed, Arshiya Ansari, Moin Ali Siddiqui, Mohd Imran, Beauty Kumari, Afzal Khan, P. Ranjan
{"title":"Electrochemical and optical-based systems for SARS-COV-2 and various pathogens assessment","authors":"Shahzad Ahmed, Arshiya Ansari, Moin Ali Siddiqui, Mohd Imran, Beauty Kumari, Afzal Khan, P. Ranjan","doi":"10.1088/2043-6262/aceda9","DOIUrl":"https://doi.org/10.1088/2043-6262/aceda9","url":null,"abstract":"A critical step in the process for preventing and identifying emergencies relating to health, safety, and welfare is the testing and quick diagnosis of microbial pathogens. Due to the fast spread of waterborne and food borne infections in society and the high costs associated with them, pathogen identification has emerged as one of the most difficult parts of the water and food sectors. Since the turn of the century, pathogens have demonstrated enormous epidemiological and pandemic potential. The emergence and dissemination of a novel virus with pandemic potential endanger the livelihoods and well-being of individuals worldwide. The severe acute respiratory syndrome-coronavirus-2 (SARS-COV-2) coronavirus pandemic has propagated to almost every country on Earth and has had a considerable negative influence on economies and communities. Despite improvements in identification techniques for viral diseases, all nations must now execute biosensing in a speedy, sensitive, focused, and consistent manner in order to address pressing global issues. Hence, in this review, we have critically summarised the recent advancement of electrochemical as well as optical biosensors for the monitoring of SARS-COV-2 and various pathogens. Then, we began by providing a technical overview of cutting-edge strategies utilised to combat diseases and emergencies for it, including the utilisation of point-of-care technology (POCT), artificial intelligence (AI), and the internet of medical things (IoMT). This review article explores the integration of POC, IoMT, and AI technologies in the context of personal healthcare, focusing on their potential to expedite the diagnosis and treatment of medical conditions, ultimately leading to improved patient outcomes. Subsequently, the notion and execution of multiplex testing are presented to enhance the comprehension of detecting multiple analytes. Finally, conclusions and future directions have been presented.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"14 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41332268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Sintering β-SiC nanopowder using novel microwave-current assisted sintering technique: preliminary study 微波电流辅助烧结β-SiC纳米粉体的初步研究
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-08-10 DOI: 10.1088/2043-6262/acebd6
H. K. M. Al-Jothery, T. Albarody, N. Sultan, H. G. Mohammed, P. Megat-Yusoff, N. Almuramady, W. J. A. AL-Nidawi
{"title":"Sintering β-SiC nanopowder using novel microwave-current assisted sintering technique: preliminary study","authors":"H. K. M. Al-Jothery, T. Albarody, N. Sultan, H. G. Mohammed, P. Megat-Yusoff, N. Almuramady, W. J. A. AL-Nidawi","doi":"10.1088/2043-6262/acebd6","DOIUrl":"https://doi.org/10.1088/2043-6262/acebd6","url":null,"abstract":"Silicon carbide is a crucial structure material because of its wide applications in different fields, such as electronics. The impurities have negative impact on the homogenous sinterability of nano SiC during the sintering process, especially the silicon dioxide. So, the consolidation of SiC nanopowders was conducted by the microwave-current assisted sintering process. Field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD) were utilised to examine the nanopowders and sintered samples of SiC. The results showed that the smallest average grain sizes of sintered specimens of treated and untreated-SiC nanopowders were 331 and 428 nm, respectively. The relative densities of sintered specimens of treated and untreated-SiC nanopowders were around 97.1% and 93.8%, respectively. In conclusion, the nanostructure of sintered SiC was the benchmark of the microwave-current assisted sintering technique.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46859031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信