{"title":"The Synergic Effects of Climate Variability on Rainfall Distribution over Hare Catchment of Ethiopia","authors":"Abebe Temesgen Ayalew","doi":"10.1155/2023/1175426","DOIUrl":"https://doi.org/10.1155/2023/1175426","url":null,"abstract":"Climate analysis at relevant time scales is important for water resources management, agricultural planning, flood risk assessment, ecological modeling, and climate change adaptation. This study analyzes the spatiotemporal variability of climate on rainfall distribution for the Hare catchment of Ethiopia. Numerous hydroclimatic variables and scenarios were developed to assess the pattern of rainfall during different seasons. The average annual precipitation varies between −37.3%, +33.1%, and −38.2%, +61.2%, for RCP 4.5 and RCP 8.5, respectively. The anticipated declines in mean seasonal rainfall changes for the Bega and Belg seasons range from −69.6% to 88.4% and from −60.6% to 15.2% for RCP 4.5 and RCP 8.5, respectively. Climate models predict that the average periodic precipitation considered for the Kiremt season will vary from −12.1% to 1.33%. The Belg, Kiremt, and Bega seasons will likely see a 28.2%, 12.2%, and 22.6% drop in mean seasonal precipitation, respectively. The decrease in stream flow accompanied by the aforementioned climate scenarios (RCP 4.5 and RCP 8.5) can be as high as 19.6% and 6.7%, respectively. Also, the amount of discharge will reduce in the near future because of a substantial reduction in rainfall and a rise in evapotranspiration in the catchment. This decline in stream flow has its own effect on the future availability of water resources. The research finding is vital to environmental protection authority, decision makers, and scientific community to undertake climate change adaption techniques for rain scare areas. A program combined with multi-RCMs to evaluate climate change effects on hydrometeorology generated a novel approach to this research with appropriate adaptation mechanisms.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"18 22","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135589510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on O3 Variations in Nanjing and the Surrounding Source Analysis","authors":"Jiaqi Shi, Jinhu Wang, Yuqing Zhang, Dinyuan Liang, Anhong Xiao","doi":"10.1155/2023/5519469","DOIUrl":"https://doi.org/10.1155/2023/5519469","url":null,"abstract":"To understand the transport patterns and major sources of ozone (O3) in Nanjing, this study carried out the 48-hour backward trajectories of air masses in Nanjing from March 2021 to March 2022, based on the HYSPLIT backward trajectory model driven by GDAS global reanalysis data. The primary transmission routes and putative source locations of O3 pollution in Nanjing were determined through the integration of trajectory clustering analysis, potential source contribution function (PSCF), and concentration-weighted trajectory (CWT) analysis with meteorological data and O3 concentration data. The results showed that the high O3 concentrations and exceedance rates in Nanjing were in late spring and early summer, with the highest in June. The diurnal variation of O3 concentrations in all seasons exhibited a single peak with a maximum from 13:00 to 16:00. The southeasterly flow passing through Zhenjiang, Changzhou, Wuxi, Suzhou, and Shanghai dominated the O3 pollution in Nanjing. The PSCF and CWT presented a high consistency of O3 potential sources in Nanjing. Zhenjiang, Ma’anshan, Changzhou, Wuxi, Suzhou, and Huzhou were identified as the main potential source regions of O3 pollution in Nanjing. This study provides accurate theoretical references for regional joint prevention and control of O3 pollution in Nanjing.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"20 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135567184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Objective Identification Method of Cold-Front Precipitation in Winter Half Years over East Asia","authors":"Shuya He, Yujing Qin, Chuhan Lu, Mengru Feng","doi":"10.1155/2023/2361993","DOIUrl":"https://doi.org/10.1155/2023/2361993","url":null,"abstract":"Cold front is an important weather system that produces precipitation in East Asia. Under the background of global warming, extreme precipitation caused by cold fronts presents a significant increasing trend. Hence, it is very important to quantify the cold-front precipitation that may cause great damages. In this study, an objective identification method is proposed for cold-front precipitation, which can objectively identify the precipitation area affected by cold fronts. Then, the climatological characteristics and trends of cold-front precipitation over East Asia in the winter half years from 1989 to 2018 are investigated by using the ERA-5 reanalysis dataset. Based on the dataset of cold fronts and frontal zones, this method automatically distinguishes the precipitation area affected by cold fronts to quantitatively estimate cold-front precipitation. The results show that this identification method can well describe cold-front activities and associated precipitation during an extreme cold wave event that occurred in southern China in January 2016. In the past 30 years, cold fronts have significantly contributed to the precipitation in East Asia in winter half years. The areas with the maximum cold-front precipitation and maximum contribution rate of cold-front precipitation to total precipitation are located in the North Pacific storm track, cold-front precipitation exceeds 700 mm, and the contribution of cold-front precipitation to total precipitation exceeds 60%. In addition, the contribution rates of cold-front precipitation are also relatively large in the midlatitudes of East Asia, especially in North China and Northeast China, where cold-front precipitation accounts for 50%–60% of total precipitation. In East Asia, the total precipitation in autumn is greater than that in winter; however, cold-front precipitation and its contribution rate in winter are significantly more and larger than those in autumn. As the cold-frontal activity is more frequent and intense in winter, the rainfall in winter depends more on cold fronts. In the past 30 years, the trends of cold-front precipitation and total precipitation are consistent in most parts of East Asia, indicating that cold-front precipitation makes a great contribution to the trend of total precipitation in winter half years.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"16 13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135728680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Research on Tourism Resource Evaluation Based on Artificial Intelligence Neural Network Model","authors":"Advances in Meteorology","doi":"10.1155/2023/9781801","DOIUrl":"https://doi.org/10.1155/2023/9781801","url":null,"abstract":"<jats:p />","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134910545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Research on the Design of Public Space in Urban Renewal Based on Multicriteria Cluster Decision-Making","authors":"Advances in Meteorology","doi":"10.1155/2023/9813087","DOIUrl":"https://doi.org/10.1155/2023/9813087","url":null,"abstract":"<jats:p />","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134910720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Evaluation Model of Eco-Environmental Economic Benefit Based on the Fuzzy Algorithm","authors":"Advances in Meteorology","doi":"10.1155/2023/9878041","DOIUrl":"https://doi.org/10.1155/2023/9878041","url":null,"abstract":"<jats:p />","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134910521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Detection Algorithm of Tennis Serve Mistakes Based on Feature Point Trajectory","authors":"Advances in Meteorology","doi":"10.1155/2023/9795750","DOIUrl":"https://doi.org/10.1155/2023/9795750","url":null,"abstract":"<jats:p />","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134911602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Djigbo Félicien Badou, José Hounkanrin, Jean Hounkpè, Luc Ollivier Sintondji, Agnidé Emmanuel Lawin
{"title":"Assessing the Return Periods and Hydroclimatic Parameters for Rainwater Drainage in the Coastal City of Cotonou in Benin under Climate Variability","authors":"Djigbo Félicien Badou, José Hounkanrin, Jean Hounkpè, Luc Ollivier Sintondji, Agnidé Emmanuel Lawin","doi":"10.1155/2023/1752805","DOIUrl":"https://doi.org/10.1155/2023/1752805","url":null,"abstract":"Cotonou, the economic capital of Benin, is suffering from the impacts of climate change, particularly evident through recurrent floods. To effectively manage these floods and address this issue, it is crucial to have a deep understanding of return periods and hydroclimatic parameters (such as intensity-duration-frequency (IDF) curves and related coefficients), which are essential for designing stormwater drainage structures. Determining return periods and these parameters requires statistical analysis of extreme events, and this analysis needs to be regularly updated in response to climate change. The objective of this study was to determine the necessary return periods and hydroclimatic parameters to improve stormwater drainage systems in the city and its surroundings areas. This required annual maximum precipitation series of 1, 2, 3, 6, 12, and 24 h for 20 years length (1999–2018) as well as flood record data. The intensity series, derived by dividing the amount of rainfall by its duration, was adjusted using Gumbel’s law. IDF curves were constructed based on Montana and Talbot models, and their coefficients were determined according to the corresponding return periods. In 2010, which witnessed devastating floods in the country, the return period for the most intense rainfall events was 40 years, followed by 2013 with a return period of 13.4 years. Consequently, the commonly used 10-year return period for the design of stormwater drainage structures in Cotonou is insufficient. The Talbot model produced the lowest mean square errors for each quantile series and coefficients of determination closest to one, indicating that the parameters obtained from this model are well suited for designing hydraulic structures in Cotonou. The hydroclimatic parameters presented in this study will contribute to the improved design of hydraulic structures in the city of Cotonou.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136108702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Séverin Mbog Mbog, Cyrille Adiang Mezoue, Yannick Cédric Ngangmo, D. Bitondo, Ruben Martin Mouangue
{"title":"Monitoring and Control of Particulate Matter in Urban Area in Douala-Cameroon Town","authors":"Séverin Mbog Mbog, Cyrille Adiang Mezoue, Yannick Cédric Ngangmo, D. Bitondo, Ruben Martin Mouangue","doi":"10.1155/2023/9967687","DOIUrl":"https://doi.org/10.1155/2023/9967687","url":null,"abstract":"This study focused on the content of fine particle air pollution in the city of Douala. Several studies have analyzed pollution problems due to road traffic in Douala, Cameroon. Particle concentration levels are higher in heavy traffic than in light traffic. The population’s exposure to air pollution in cities is higher near roads. Several studies have analyzed pollution problems due to road traffic in Douala, Cameroon. In this city, the traffic density at the intersections is indeed higher. Thus, the question is as follows: Are these traffic areas hotspots of increased PM exposure levels? To determine it, four particle size fractions (PM10, PM2.5, PM5, and PM1) were collected using an “OC300 Gas and Dust Particle Laser Detector” for three months at different traffic locations (roundabouts or/and crossroads). Statistical analysis of the data shows very high concentrations at most measurement sites. PM concentrations at the different measurement sites are around 35.69-68.08 µg m−3 for PM1, 50.72-99.13 µg m−3 for PM2.5, 54.11-111.22 µg m−3 for PM5, and 57.97-119.25 µg m−3 for PM10. Exceedances of WHO daily guidelines for PM2.5 (45 µg m−3) and PM10 (15 µg m−3) were found during the measurement campaign, indicating that crossroads are the pollution hotspots in urban areas. Occupation of the roadsides for various economic activities (painting, restaurants, donut shops, etc.) is common in Cameroon, increasing health risks for people working around the roadside. Thus, crossroad locations are areas where the level of exposure to PMx is the highest on road traffics.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49076966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Copula-Based Joint Flood Frequency Analysis: The Case of Guder River, Upper Blue Nile Basin, Ethiopia","authors":"M. Haile, Rakesh Khosa, Asnake Kassahun Abebe, Ayansa Teshome Gelalcha, Abera Misgana Tolera","doi":"10.1155/2023/7637884","DOIUrl":"https://doi.org/10.1155/2023/7637884","url":null,"abstract":"The univariate analysis of hydrological extremes is a well-established practice in developing countries such as Ethiopia. However, for the design of hydrological and hydraulic systems, it is essential to have a thorough understanding of flood event characteristics, including volumes, peaks, time of occurrence, and duration. This study utilizes copula functions for bivariate modeling of flood peak and volume characteristics, examining the performance of four Archimedean copulas in the Guder basin located in Ethiopia from 1987 to 2017. Flood peak and volume were extracted using the theory of runs for analysis of their joint characteristics with the truncation level chosen as equal to the lowest annual maximum event. Univariate distributions with the best fitness on both variables were determined, and results showed that gamma and GEV-fitted flood peaks and lognormal-fitted flood volumes are the most suitable. Four Archimedean copulas were evaluated, and the Gumbel-Hougaard copula was found to be the best fit for the data based on graphical and measurable tests. Bivariate probability and return period were computed in “AND” and “OR” states. The joint return period for flood peak (97.49 m3/s) and volume (77.35 m3/s) was found to be 15 years in the “AND” state and approximately 4 years in the “OR” state. The study also evaluates univariate and conditional return periods, comparing them with the primary one. The copula method was an effective method for distributing marginal variables, highlighting its potential as a valuable tool in flood management.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64799815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}