{"title":"Evolution of three parent genes and their retrogene copies in Drosophila species.","authors":"Ryan S O'Neill, Denise V Clark","doi":"10.1155/2013/693085","DOIUrl":"https://doi.org/10.1155/2013/693085","url":null,"abstract":"<p><p>Retrogenes form a class of gene duplicate lacking the regulatory sequences found outside of the mRNA-coding regions of the parent gene. It is not clear how a retrogene's lack of parental regulatory sequences affects the evolution of the gene pair. To explore the evolution of parent genes and retrogenes, we investigated three such gene pairs in the family Drosophilidae; in Drosophila melanogaster, these gene pairs are CG8331 and CG4960, CG17734 and CG11825, and Sep2 and Sep5. We investigated the embryonic expression patterns of these gene pairs across multiple Drosophila species. Expression patterns of the parent genes and their single copy orthologs are relatively conserved across species, whether or not a species has a retrogene copy, although there is some variation in CG8331 and CG17734. In contrast, expression patterns of the retrogene orthologs have diversified. We used the genome sequences of 20 Drosophila species to investigate coding sequence evolution. The coding sequences of the three gene pairs appear to be evolving predominantly under negative selection; however, the parent genes and retrogenes show some distinct differences in amino acid sequence. Therefore, in general, retrogene expression patterns and coding sequences are distinct compared to their parents and, in some cases, retrogene expression patterns diversify. </p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"693085"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/693085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31569513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junjie Ma, Andrew K Benson, Stephen D Kachman, Deidra J Jacobsen, Lawrence G Harshman
{"title":"Drosophila melanogaster Selection for Survival after Infection with Bacillus cereus Spores: Evolutionary Genetic and Phenotypic Investigations of Respiration and Movement.","authors":"Junjie Ma, Andrew K Benson, Stephen D Kachman, Deidra J Jacobsen, Lawrence G Harshman","doi":"10.1155/2013/576452","DOIUrl":"https://doi.org/10.1155/2013/576452","url":null,"abstract":"<p><p>Laboratory populations of D. melanogaster have been subjected to selection for survival after live spores of B. cereus were introduced as a pathogenic agent. The present study was designed to investigate correlated traits: respiration as a metabolic trait and movement as a behavioral trait. An underlying hypothesis was that the evolution of increased survival after B. cereus infection exerts a metabolic cost associated with elevated immunity and this would be detected by increased respiration rates. There was support for this hypothesis in the male response to selection, but not for selected-line females. Two phenotypic effects were also observed in the study. Females especially showed a marked increase in respiration after mating compared to the other assay stages regardless of whether respiration was measured per fly or adjusted by lean mass or dry weight. Given that mating stimulates egg production, it is feasible that elevated metabolism was needed to provision oocytes with yolk. Females also moved less than males, perhaps due to behaviors related to oviposition whereas elevated male activity might be due to behaviors associated with seeking females and courtship. Relatively low movement of females indicated that their elevated respiration after mating was not due to a change in locomotion.</p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"576452"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/576452","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31398507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pathmanathan Raghavan, David Bulbeck, Gayathiri Pathmanathan, Suresh Kanta Rathee
{"title":"Indian craniometric variability and affinities.","authors":"Pathmanathan Raghavan, David Bulbeck, Gayathiri Pathmanathan, Suresh Kanta Rathee","doi":"10.1155/2013/836738","DOIUrl":"10.1155/2013/836738","url":null,"abstract":"<p><p>Recently published craniometric and genetic studies indicate a predominantly indigenous ancestry of Indian populations. We address this issue with a fuller coverage of Indian craniometrics than any done before. We analyse metrical variability within Indian series, Indians' sexual dimorphism, differences between northern and southern Indians, index-based differences of Indian males from other series, and Indians' multivariate affinities. The relationship between a variable's magnitude and its variability is log-linear. This relationship is strengthened by excluding cranial fractions and series with a sample size less than 30. Male crania are typically larger than female crania, but there are also shape differences. Northern Indians differ from southern Indians in various features including narrower orbits and less pronounced medial protrusion of the orbits. Indians resemble Veddas in having small crania and similar cranial shape. Indians' wider geographic affinities lie with \"Caucasoid\" populations to the northwest, particularly affecting northern Indians. The latter finding is confirmed from shape-based Mahalanobis-D distances calculated for the best sampled male and female series. Demonstration of a distinctive South Asian craniometric profile and the intermediate status of northern Indians between southern Indians and populations northwest of India confirm the predominantly indigenous ancestry of northern and especially southern Indians. </p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"836738"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32056786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of a Larger SNP Dataset from the HapMap Project Confirmed That the Modern Human A Allele of the ABO Blood Group Genes Is a Descendant of a Recombinant between B and O Alleles.","authors":"Masaya Itou, Mitsuharu Sato, Takashi Kitano","doi":"10.1155/2013/406209","DOIUrl":"10.1155/2013/406209","url":null,"abstract":"<p><p>The human ABO blood group gene consists of three main alleles (A, B, and O) that encode a glycosyltransferase. The A and B alleles differ by two critical amino acids in exon 7, and the major O allele has a single nucleotide deletion (Δ261) in exon 6. Previous evolutionary studies have revealed that the A allele is the most ancient, B allele diverged from the A allele with two critical amino acid substitutions in exon 7, and the major O allele diverged from the A allele with Δ261 in exon 6. However, a recent phylogenetic network analysis study showed that the A allele of humans emerged through a recombination between the B and O alleles. In the previous study, a restricted dataset from only two populations was used. In this study, therefore, we used a large single nucleotide polymorphism (SNP) dataset from the HapMap Project. The results indicated that the A101-A201-O09 haplogroup was a recombinant lineage between the B and O haplotypes, containing the intact exon 6 from the B allele and the two critical A type sites in exon 7 from the major O allele. Its recombination point was assumed to be located just behind Δ261 in exon 6. </p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"406209"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31911745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher K Tokita, Jeffrey C Oliver, Antónia Monteiro
{"title":"A Survey of Eyespot Sexual Dimorphism across Nymphalid Butterflies.","authors":"Christopher K Tokita, Jeffrey C Oliver, Antónia Monteiro","doi":"10.1155/2013/926702","DOIUrl":"https://doi.org/10.1155/2013/926702","url":null,"abstract":"<p><p>Differences between sexes of the same species are widespread and are variable in nature. While it is often assumed that males are more ornamented than females, in the nymphalid butterfly genus Bicyclus, females have, on average, more eyespot wing color patterns than males. Here we extend these studies by surveying eyespot pattern sexual dimorphism across the Nymphalidae family of butterflies. Eyespot presence or absence was scored from a total of 38 wing compartments for two males and two females of each of 450 nymphalid species belonging to 399 different genera. Differences in eyespot number between sexes of each species were tallied for each wing surface (e.g., dorsal and ventral) of forewings and hindwings. In roughly 44% of the species with eyespots, females had more eyespots than males, in 34%, males had more eyespots than females, and, in the remaining 22% of the species, there was monomorphism in eyespot number. Dorsal and forewing surfaces were less patterned, but proportionally more dimorphic, than ventral and hindwing surfaces, respectively. In addition, wing compartments that frequently displayed eyespots were among the least sexually dimorphic. This survey suggests that dimorphism arises predominantly in \"hidden\" or \"private\" surfaces of a butterfly's wing, as previously demonstrated for the genus Bicyclus. </p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"926702"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/926702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31992937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosa Calvello, Antonia Cianciulli, Maria Antonietta Panaro
{"title":"Conservation/Mutation in the splice sites of cytokine receptor genes of mouse and human.","authors":"Rosa Calvello, Antonia Cianciulli, Maria Antonietta Panaro","doi":"10.1155/2013/818954","DOIUrl":"https://doi.org/10.1155/2013/818954","url":null,"abstract":"<p><p>Conservation/mutation in the intronic initial and terminal hexanucleotides was studied in 26 orthologous cytokine receptor genes of Mouse and Human. Introns began and ended with the canonical dinucleotides GT and AG, respectively. Identical configurations were found in 57% of the 5' hexanucleotides and 28% of the 3' hexanucleotides. The actual conservation percentages of the individual variable nucleotides at each position in the hexanucleotides were determined, and the theoretical rates of conservation of groups of three nucleotides were calculated under the hypothesis of a mutual evolutionary independence of the neighboring nucleotides (random association). Analysis of the actual conservation of groups of variable nucleotides showed that, at 5', GTGAGx was significantly more expressed and GTAAGx was significantly less expressed, as compared to the random association. At 3', TTTxAG and xTGCAG were overexpressed as compared to a random association. Study of Mouse and Human transcript variants involving the splice sites showed that most variants were not inherited from the common ancestor but emerged during the process of speciation. In some variants the silencing of a terminal hexanucleotide determined skipping of the downstream exon; in other variants the constitutive splicing hexanucleotide was replaced by another potential, in-frame, splicing hexanucleotide, leading to alterations of exon lengths. </p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"818954"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/818954","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32056785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sex-biased networks and nodes of sexually antagonistic conflict in Drosophila.","authors":"Matthew E B Hansen, Rob J Kulathinal","doi":"10.1155/2013/545392","DOIUrl":"https://doi.org/10.1155/2013/545392","url":null,"abstract":"<p><p>Sexual antagonism, or conflict, can occur when males and females harbor opposing reproductive strategies. The large fraction of sex-biased genes in genomes present considerable opportunities for conflict to occur, suggesting that sexual antagonism may potentially be a general phenomenon at the molecular level. Here, we employ a novel strategy to identify potential nodes of sexual conflict in Drosophila melanogaster by coupling male, female, and sex-unbiased networks derived from genome-wide expression data with available genetic and protein interaction data. We find that sex-biased networks comprise a large fraction (~1/3) of the total interaction network with the male network possessing nearly twice the number of nodes (genes) relative to the female network. However, there are far less edges or interaction partners among male relative to female subnetworks as seen in their power law distributions. We further identified 598 sex-unbiased genes that can act as indirect nodes of interlocus sexual conflict as well as 271 direct nodal pairs of potential conflict between male- and female-biased genes. The pervasiveness of such potentially conflicting nodes may explain the rapid evolution of sex-biased as well as non-sex-biased genes via this molecular mechanism of sexual selection even among taxa such as Drosophila that are nominally sexually dimorphic.</p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"545392"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/545392","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31349438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Good, Sergey Yegorov, Joran Martijn, Jens Franck, Jan Bogerd
{"title":"Erratum to \"new insights into ligand-receptor pairing and coevolution of relaxin family peptides and their receptors in teleosts\".","authors":"Sara Good, Sergey Yegorov, Joran Martijn, Jens Franck, Jan Bogerd","doi":"10.1155/2013/807326","DOIUrl":"https://doi.org/10.1155/2013/807326","url":null,"abstract":"Relaxin-like peptides (RLN/INSL) play diverse roles in reproductive and neuroendocrine processes in placental mammals and are functionally associated with two distinct types of receptors (RXFP) for each respective function. The diversification of RLN/INSL and RXFP gene families in vertebrates was predominantly driven by whole genome duplications (2R and 3R). Teleosts preferentially retained duplicates of genes putatively involved in neuroendocrine regulation, harboring a total of 10-11 receptors and 6 ligand genes, while most mammals have equal numbers of ligands and receptors. To date, the ligand-receptor relationships of teleost Rln/Insl peptides and their receptors have largely remained unexplored. Here, we use selection analyses based on sequence data from 5 teleosts and qPCR expression data from zebrafish to explore possible ligand-receptor pairings in teleosts. We find support for the hypothesis that, with the exception of RLN, which has undergone strong positive selection in mammalian lineages, the ligand and receptor genes shared between mammals and teleosts appear to have similar pairings. On the other hand, the teleostspecific receptors show evidence of subfunctionalization. Overall, this study underscores the complexity of RLN/INSL and RXFP ligand-receptor interactions in teleosts and establishes theoretical background for further experimental work in nonmammals.","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"807326"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/807326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31458642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"No experimental evidence for sneaking in a west african cichlid fish with extremely long sperm.","authors":"Kathrin Langen, Timo Thünken, Theo C M Bakker","doi":"10.1155/2013/714304","DOIUrl":"https://doi.org/10.1155/2013/714304","url":null,"abstract":"<p><p>Alternative reproductive tactics are widespread in fishes, increasing the potential for sperm competition. Sperm competition has enormous impact on both variation in sperm numbers and sperm size. In cichlids, the sperm competition risk is very divergent and longer sperm are usually interpreted as adaptation to sperm competition. Here we examined whether sneaking tactics exist in Pelvicachromis taeniatus, a socially monogamous cichlid with biparental brood care from West Africa. The small testis indicates low gonadal investment which is typical for genetically monogamous species. In contrast, sperm length with up to 85 μ m is extraordinarily long. We examined the reproductive behaviour of ten groups with a male-biased sex ratio under semi-natural conditions via continuous video recording. We recorded spawning site preferences and correlates of reproductive success and conducted paternity tests using microsatellites. Safe breeding sites that could be successfully defended were preferred. All offspring could be assigned to their parents and no multiple paternities were detected. Body size of spawning pairs predicted their spawning probability and offspring hatching rate suggesting benefits from mating with large individuals. Our study suggests low risk of sperm competition under the given conditions in P. taeniatus and thus first evidence for genetic monogamy in a substrate breeding cichlid. </p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"714304"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/714304","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31998537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNA-Mediated Gene Duplication and Retroposons: Retrogenes, LINEs, SINEs, and Sequence Specificity.","authors":"Kazuhiko Ohshima","doi":"10.1155/2013/424726","DOIUrl":"https://doi.org/10.1155/2013/424726","url":null,"abstract":"<p><p>A substantial number of \"retrogenes\" that are derived from the mRNA of various intron-containing genes have been reported. A class of mammalian retroposons, long interspersed element-1 (LINE1, L1), has been shown to be involved in the reverse transcription of retrogenes (or processed pseudogenes) and non-autonomous short interspersed elements (SINEs). The 3'-end sequences of various SINEs originated from a corresponding LINE. As the 3'-untranslated regions of several LINEs are essential for retroposition, these LINEs presumably require \"stringent\" recognition of the 3'-end sequence of the RNA template. However, the 3'-ends of mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 3'-poly(A) repeats. Since the 3'-poly(A) repeats of L1 and Alu SINE are critical for their retroposition, L1 probably recognizes the poly(A) repeats, thereby mobilizing not only Alu SINE but also cytosolic mRNA. Many flowering plants only harbor L1-clade LINEs and a significant number of SINEs with poly(A) repeats, but no homology to the LINEs. Moreover, processed pseudogenes have also been found in flowering plants. I propose that the ancestral L1-clade LINE in the common ancestor of green plants may have recognized a specific RNA template, with stringent recognition then becoming relaxed during the course of plant evolution. </p>","PeriodicalId":73449,"journal":{"name":"International journal of evolutionary biology","volume":"2013 ","pages":"424726"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/424726","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31689544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}