Immunotherapy advancesPub Date : 2022-09-13eCollection Date: 2022-01-01DOI: 10.1093/immadv/ltac020
Gavin R Meehan, Hannah E Scales, Iain B McInnes, James M Brewer, Paul Garside
{"title":"Orally administered antigen can reduce or exacerbate pathology in an animal model of inflammatory arthritis dependent upon the timing of administration.","authors":"Gavin R Meehan, Hannah E Scales, Iain B McInnes, James M Brewer, Paul Garside","doi":"10.1093/immadv/ltac020","DOIUrl":"https://doi.org/10.1093/immadv/ltac020","url":null,"abstract":"<p><p>Currently, treatments for rheumatoid arthritis (RA) are focussed on management of disease symptoms rather than addressing the cause of disease, which could lead to remission and cure. Central to disease development is the induction of autoimmunity through a breach of self-tolerance. Developing approaches to re-establish antigen specific tolerance is therefore an important emerging area of RA research. A crucial step in this research is to employ appropriate animal models to test prospective antigen specific immunotherapies. In this short communication, we evaluate our previously developed model of antigen specific inflammatory arthritis in which ovalbumin-specific T cell receptor transgenic T cells drive breach of tolerance to endogenous antigens to determine the impact that the timing of therapy administration has upon disease progression. Using antigen feeding to induce tolerance we demonstrate that administration prior to articular challenge results in a reduced disease score as evidenced by pathology and serum antibody responses. By contrast, feeding antigen after initiation of disease had the opposite effect and resulted in the exacerbation of pathology. These preliminary data suggest that the timing of antigen administration may be key to the success of tolerogenic immunotherapies. This has important implications for the timing of potential tolerogenic therapies in patients.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":"ltac020"},"PeriodicalIF":0.0,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40648497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2022-06-24eCollection Date: 2022-01-01DOI: 10.1093/immadv/ltac015
Gabriel Pasquarelli-do-Nascimento, Sabrina Azevedo Machado, Juliana Maria Andrade de Carvalho, Kelly Grace Magalhães
{"title":"Obesity and adipose tissue impact on T-cell response and cancer immune checkpoint blockade therapy.","authors":"Gabriel Pasquarelli-do-Nascimento, Sabrina Azevedo Machado, Juliana Maria Andrade de Carvalho, Kelly Grace Magalhães","doi":"10.1093/immadv/ltac015","DOIUrl":"https://doi.org/10.1093/immadv/ltac015","url":null,"abstract":"<p><p>Many different types of cancer are now well known to have increased occurrence or severity in individuals with obesity. The influence of obesity on cancer and the immune cells in the tumor microenvironment has been thought to be a pleiotropic effect. As key endocrine and immune organs, the highly plastic adipose tissues play crucial roles in obesity pathophysiology, as they show alterations according to environmental cues. Adipose tissues of lean subjects present mostly anti-inflammatory cells that are crucial in tissue remodeling, favoring uncoupling protein 1 expression and non-shivering thermogenesis. Oppositely, obese adipose tissues display massive proinflammatory immune cell infiltration, dying adipocytes, and enhanced crown-like structure formation. In this review, we discuss how obesity can lead to derangements and dysfunctions in antitumor CD8+ T lymphocytes dysfunction. Moreover, we explain how obesity can affect the efficiency of cancer immunotherapy, depicting the mechanisms involved in this process. Cancer immunotherapy management includes monoclonal antibodies targeting the immune checkpoint blockade. Exhausted CD8+ T lymphocytes show elevated programmed cell death-1 (PD-1) expression and highly glycolytic tumors tend to show a good response to anti-PD-1/PD-L1 immunotherapy. Although obesity is a risk factor for the development of several neoplasms and is linked with increased tumor growth and aggressiveness, obesity is also related to improved response to cancer immunotherapy, a phenomenon called the obesity paradox. However, patients affected by obesity present higher incidences of adverse events related to this therapy. These limitations highlight the necessity of a deeper investigation of factors that influence the obesity paradox to improve the application of these therapies.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":"ltac015"},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33443195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2022-06-22eCollection Date: 2022-01-01DOI: 10.1093/immadv/ltac013
{"title":"Corrigendum to: 100 years post-insulin: immunotherapy as the next frontier in type 1 diabetes.","authors":"","doi":"10.1093/immadv/ltac013","DOIUrl":"https://doi.org/10.1093/immadv/ltac013","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/immadv/ltab024.].</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":"ltac013"},"PeriodicalIF":0.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40558968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adrenergic signaling regulation of macrophage function: do we understand it yet?","authors":"B. M. Freire, F. M. de Melo, A. Basso","doi":"10.1093/immadv/ltac010","DOIUrl":"https://doi.org/10.1093/immadv/ltac010","url":null,"abstract":"Abstract Macrophages are immune cells that are widespread throughout the body and critical for maintaining tissue homeostasis. Their remarkable plasticity allows them to acquire different phenotypes, becoming able either to fight infection (M1-like, classically activated macrophages) or to promote tissue remodeling and repair (M2-like, alternatively activated macrophages). These phenotypes are induced by different cues present in the microenvironment. Among the factors that might regulate macrophage activation are mediators produced by different branches of the nervous system. The regulation exerted by the sympathetic nervous system (SNS) on macrophages (and the immune system in general) is becoming a subject of increasing interest, indeed a great number of articles have been published lately. Catecholamines (noradrenaline and adrenaline) activate α and β adrenergic receptors expressed by macrophages and shape the effector functions of these cells in contexts as diverse as the small intestine, the lung, or the adipose tissue. Activation of different subsets of receptors seems to produce antagonistic effects, with α adrenergic receptors generally associated with pro-inflammatory functions and β adrenergic receptors (particularly β2) related to the resolution of inflammation and tissue remodeling. However, exceptions to this paradigm have been reported, and the factors contributing to these apparently contradictory observations are still far from being completely understood. Additionally, macrophages per se seem to be sources of catecholamines, which is also a subject of some debate. In this review, we discuss how activation of adrenergic receptors modulates macrophage effector functions and its implications for inflammatory responses and tissue homeostasis.","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44712837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current and future perspectives of chimeric antigen receptors against glioblastoma","authors":"Josephine Zhang, Jesús A. Siller-Farfán","doi":"10.1093/immadv/ltac014","DOIUrl":"https://doi.org/10.1093/immadv/ltac014","url":null,"abstract":"Abstract Glioblastoma multiforme (GBM) is the most malignant form of cancer in the central nervous system; even with treatment, it has a 5-year survival rate of 7.2%. The adoptive cell transfer (ACT) of T cells expressing chimeric antigen receptors (CARs) has shown a remarkable success against hematological malignancies, namely leukemia and multiple myeloma. However, CAR T cell therapy against solid tumors, and more specifically GBM, is still riddled with challenges preventing its widespread adoption. Here, we first establish the obstacles in ACT against GBM, including on-target/off-tumor toxicity, antigen modulation, tumor heterogeneity, and the immunosuppressive tumor microenvironment. We then present recent preclinical and clinical studies targeting well-characterized GBM antigens, which include the interleukin-13 receptor α2 and the epidermal growth factor receptor. Afterward, we turn our attention to alternative targets in GBM, including less-explored antigens such as B7-H3 (CD276), carbonic anhydrase IX, and the GD2 ganglioside. We also discuss additional target ligands, namely CD70, and natural killer group 2 member D ligands. Finally, we present the possibilities afforded by novel CAR architectures. In particular, we examine the use of armored CARs to improve the survival and proliferation of CAR T cells. We conclude by discussing the advantages of tandem and synNotch CARs when targeting multiple GBM antigens.","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49654647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2022-04-20eCollection Date: 2022-01-01DOI: 10.1093/immadv/ltac009
Mike Bogetofte Barnkob, Kristoffer Vitting-Seerup, Lars Rønn Olsen
{"title":"Target isoforms are an overlooked challenge and opportunity in chimeric antigen receptor cell therapy.","authors":"Mike Bogetofte Barnkob, Kristoffer Vitting-Seerup, Lars Rønn Olsen","doi":"10.1093/immadv/ltac009","DOIUrl":"https://doi.org/10.1093/immadv/ltac009","url":null,"abstract":"<p><p>The development of novel chimeric antigen receptor (CAR) cell therapies is rapidly growing, with 299 new agents being reported and 109 new clinical trials initiated so far this year. One critical lesson from approved CD19-specific CAR therapies is that target isoform switching has been shown to cause tumour relapse, but little is known about the isoforms of CAR targets in solid cancers. Here we assess the protein isoform landscape and identify both the challenges and opportunities protein isoform switching present as CAR therapy is applied to solid cancers.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":"ltac009"},"PeriodicalIF":0.0,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d2/1b/ltac009.PMC9327123.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40666628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2022-04-08eCollection Date: 2022-01-01DOI: 10.1093/immadv/ltac008
Guilherme Ferreira de Britto Evangelista, Amanda Braga Figueiredo, Milton José de Barros E Silva, Kenneth J Gollob
{"title":"Balancing the good and the bad: controlling immune-related adverse events versus anti-tumor responses in cancer patients treated with immune checkpoint inhibitors.","authors":"Guilherme Ferreira de Britto Evangelista, Amanda Braga Figueiredo, Milton José de Barros E Silva, Kenneth J Gollob","doi":"10.1093/immadv/ltac008","DOIUrl":"https://doi.org/10.1093/immadv/ltac008","url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICI) have provided new hope for cancer patients, and in particular for patients with tumors that are immunologically active and classified as hot tumors. These tumors express antigenic and tumor microenvironment (TME) characteristics that make them potential candidates for therapy with checkpoint inhibitors that aim to reactivate the immune response such as anti-PD-1 and anti-CTLA-4. Examples of potentially responsive cancers are, melanoma, non-small cell lung cancer and several other metastatic or unresectable tumors with genetic instability: DNA mismatch repair deficiency (dMMR), microsatellite instability-high (MSI-H), or with a high tumor mutational burden (TMB). Immunotherapy using checkpoint inhibitors is typically associated with adverse events (AEs) that are milder than those with chemotherapy. However, a significant percentage of patients develop short-term immune-related AEs (irAEs) which range from mild (~70%) to severe cases (~13%) that can lead to modifications of the checkpoint inhibitor therapy and in some cases, death. While some studies have investigated immune mechanisms behind the development of irAEs, much more research is needed to understand the mechanisms and to develop interventions that could attenuate severe irAEs, while maintaining the anti-tumor response intact. Moreover, studies to identify biomarkers that can predict the likelihood of a patient developing severe irAEs would be of great clinical importance. Here we discuss some of the clinical ramifications of irAEs, potential immune mechanisms behind their development and studies that have investigated potentially useful biomarkers of irAEs development.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":"ltac008"},"PeriodicalIF":0.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9327097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40687874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapy advancesPub Date : 2022-02-21eCollection Date: 2022-01-01DOI: 10.1093/immadv/ltac007
A Ammon, L Mellenthin, C Emmerich, E Naschberger, M Stürzl, A Mackensen, F Müller
{"title":"Reduced cytotoxicity by mutation of lysine 590 of <i>Pseudomonas</i> exotoxin can be restored in an optimized, lysine-free immunotoxin.","authors":"A Ammon, L Mellenthin, C Emmerich, E Naschberger, M Stürzl, A Mackensen, F Müller","doi":"10.1093/immadv/ltac007","DOIUrl":"https://doi.org/10.1093/immadv/ltac007","url":null,"abstract":"<p><p>Immunotoxins, which are fusion proteins of an antibody fragment and a fragment of a bacterial or a plant toxin, induce apoptosis in target cells by inhibition of protein synthesis. ADP-ribosylating toxins often have few lysine residues in their catalytic domain. As they are the target for ubiquitination, the low number of lysines possibly prevents ubiquitin-dependent degradation of the toxin in the cytosol. To reduce this potential degradation, we aimed to generate a lysine-free (noK), <i>Pseudomonas</i> exotoxin (PE)-based immunotoxin. The new generation 24 kDa PE, which lacks all but the furin-cleavage site of domain II, was mutated at lysine 590 (K590) and at K606 in a CD22-targeting immunotoxin and activity was determined against various B cell malignancies <i>in vitro</i> and <i>in vivo</i>. On average, K590 mutated to arginine (R) reduced cytotoxicity by 1.3-fold and K606R enhanced cytotoxicity by 1.3-fold compared to <i>wild type</i> (<i>wt</i>). Mutating K590 to histidine or deleting K590 did not prevent this loss in cytotoxicity. Neither stability nor internalization rate of K590R could explain reduced cytotoxicity. These results highlight the relevance of lysine 590 for PE intoxication. In line with <i>in vitro</i> results, the K606R mutant was more than 1.8-fold more active than the other variants <i>in vivo</i> suggesting that this single mutation may be beneficial when targeting CD22-positive malignancies. Finally, reduced cytotoxicity by K590R was compensated for by K606R and the resulting lysine-free variant achieved <i>wt</i>-like activity <i>in vitro</i> and <i>in vivo</i>. Thus, PE24-noK may represent a promising candidate for down-stream applications that would interfere with lysines.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":"ltac007"},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9327129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40666626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New and emerging concepts and therapies for the treatment of food allergy","authors":"David W Hwang, C. Nagler, C. Ciaccio","doi":"10.1093/immadv/ltac006","DOIUrl":"https://doi.org/10.1093/immadv/ltac006","url":null,"abstract":"Abstract Food allergy is an increasingly common disease that often starts in early childhood and lasts throughout life. Self-reported food allergy has risen at a rate of 1.2% per decade since 1988, and by 2018, the prevalence of food allergy in the United States was estimated to be 8% in children and 11% in adults.- This prevalence has led to an economic burden of almost $25 billion annually. Despite these staggering statistics, as of the time of this writing, the Food and Drug Administration (FDA) has only approved one treatment for food allergy, which is limited to use in children with peanut allergy. Fortunately, a new horizon of therapeutic interventions, in all stages of development, lay ahead and hold promise for the near future.","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46430771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}