Frontiers in environmental chemistry最新文献

筛选
英文 中文
The Transformation of Inorganic and Methylmercury in the Presence of l-Cysteine Capped CdSe Nanoparticles 无机汞和甲基汞在l-半胱氨酸覆盖的CdSe纳米粒子存在下的转化
Frontiers in environmental chemistry Pub Date : 2021-12-24 DOI: 10.3389/fenvc.2021.762052
Xian-Yang Shi, Jingchan Zhao, Yongchen Wang, R. Mason
{"title":"The Transformation of Inorganic and Methylmercury in the Presence of l-Cysteine Capped CdSe Nanoparticles","authors":"Xian-Yang Shi, Jingchan Zhao, Yongchen Wang, R. Mason","doi":"10.3389/fenvc.2021.762052","DOIUrl":"https://doi.org/10.3389/fenvc.2021.762052","url":null,"abstract":"Transformations of mercury (Hg) forms in the aquatic environment is a crucial aspect of Hg fate, transport and the bioaccumulation of methylmercury (CH3Hg; MeHg), which is the form that drives most human health concerns. Transformations between Hg forms on surfaces have been inadequately studied but here we report on the interaction of inorganic Hg (HgII) and MeHg with chalcogenide nanoparticles (NPs); specifically L-cysteine capped CdSe nanocrystals. The study sheds light on the transformation of the Hg species and the interaction mechanisms, by examining the product composition, reaction mass balance and the distribution between the liquid and solid phase. The results showed that the quenching of the photoluminescence (PL) of CdSe NPs was greater for HgII than MeHg, and that HgII caused significant PL quenching even when its concentration was in the nM range. Over 90% of HgII was found associated with the solid phase while most MeHg existed in the liquid phase in the experimental solutions. No dimethylmercury ((CH3)2Hg; DMeHg) was produced from the interaction of MeHg and the NPs, in contrast to findings with microparticles. However, a fast and complete MeHg transformation into HgII occurred when the MeHg + NPs mixture was exposed to light. A scheme for the MeHg degradation was derived and is presented, and it was concluded that the precipitation of HgSe accelerated the MeHg degradation. These results provide insight into the abiotic pathways for MeHg degradation in environmental waters in the presence of NPs.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46679287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fate and Toxicity of Carbamazepine and Its Degradation By-Products During Coupling of Ozonation and Nanofiltration for Urban Wastewater Reuse 卡马西平及其降解副产物在臭氧-纳滤耦合处理城市污水回用过程中的归宿和毒性
Frontiers in environmental chemistry Pub Date : 2021-12-09 DOI: 10.3389/fenvc.2021.798785
Z. A. Yacouba, G. Lesage, J. Mendret, F. Zaviska, E. Petit, S. Brosillon
{"title":"Fate and Toxicity of Carbamazepine and Its Degradation By-Products During Coupling of Ozonation and Nanofiltration for Urban Wastewater Reuse","authors":"Z. A. Yacouba, G. Lesage, J. Mendret, F. Zaviska, E. Petit, S. Brosillon","doi":"10.3389/fenvc.2021.798785","DOIUrl":"https://doi.org/10.3389/fenvc.2021.798785","url":null,"abstract":"Occurrence of emerging organic micropollutants in water bodies and their effects are a concern related to quality of reused water. Advanced oxidation processes have demonstrated promising results to address this challenge. Nonetheless, these processes may lead to the generation of more toxic oxidation by-products. The aim of this study was to investigate the coupling of ozonation and nanofiltration (NF) applied to carbamazepine (CBZ). It consisted in monitoring the degradation and fate of CBZ and its subsequent by-products, their fate and toxicity. CBZ was completely degraded after 5 min of ozonation and six identified transformation by-products were formed: I (hydroxycarbamazepine), BQM [1-(2-benzaldehyde)-4-hydro-(1H, 3H)-quinazoline-2-one], II (2-(1H)-quinazolinone), BaQM [1-(2-benzoic acid)-4-hydro-(1H, 3H)-quinazoline-2-one], BQD [1-(2-benzaldehyde)-(1H, 3H)-quinazoline-2,4-dione] and BaQD [1-(2-benzoic acid)-(1H, 3H)-quinazoline-2,4-dione]. Mineralization rate of ozonation never exceeded 12% even with high ozone dose. Bioassays with Vibrio fischeri revealed that BQM and BQD are responsible for toxicity. NF is able to remove total organic carbon with removal rate up to 93% at 85% of permeate recovery rate. CBZ and its different ozonation by-products were almost completely retained by NF, except the II, which had an MW slightly lower than the membrane molecular weight cut-off, for which the removal rate was still between 80 and 96% depending on the recovery rate.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42204203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Grand Challenges in Chemical Treatment of Hazardous Pollutants 危险污染物化学处理的重大挑战
Frontiers in environmental chemistry Pub Date : 2021-11-22 DOI: 10.3389/fenvc.2021.792814
V. Srivastava
{"title":"Grand Challenges in Chemical Treatment of Hazardous Pollutants","authors":"V. Srivastava","doi":"10.3389/fenvc.2021.792814","DOIUrl":"https://doi.org/10.3389/fenvc.2021.792814","url":null,"abstract":"The tremendous growth in industrialization and urbanization has resulted in generation of large amount of wastewater as well as hazardous waste (Chai et al., 2021; Titchou et al., 2021). Heterogenous solid waste usually ends up in landfills which undergoes various physicochemical change (Xiong et al., 2019; Patel et al., 2021)The nature and composition of hazardous waste varies depending on the source materials. Leachate from landfill sites has the potential to affect the water quality if it further enters into water streams via rainwater/stormwater (Bishop et al., 1986; Gautam et al., 2019). Accumulation of hazardous pollutants result in soil, water and air pollution (Quesada et al., 2019; Alemany et al., 2021; Dionne andWalker, 2021; Nikolaeva et al., 2021; Yadav et al., 2021; Łyszczarz et al., 2021). Heavy metals are widely used in different industries and due to their inefficient removal, they can directly or indirectly gain entry into water bodies. Metals are non-biodegradable and can easily accumulate in the environment (Gholizadeh and Hu, 2021; Xu et al., 2021). Different industries like textile, cosmetics, tannery, food and beverages release toxic bio-recalcitrant hazardous pollutants in the environment (Choina et al., 2013;Muszyński et al., 2019; Quesada et al., 2019; Keskin et al., 2021). The presence of both organic and inorganic pollutants in water bodies can harmfully affect the aquatic environment. Additionally, highly acidic or alkaline wastewater can also pose detrimental effects on aquatic environment. Further, various organic pollutants like pharmaceuticals, EDCs, refractory organic and dyes can generate more toxic species due to degradation or interaction with other available pollutant species (Tijani et al., 2013). Sometimes, degraded byproducts are even more toxic in comparison to their parent compound (Yin et al., 2017). The presence of emerging contaminants (ECs) in the environment is of great concern due to their harmful impacts on one hand and great challenges in existing water treatment technologies in terms of their removal efficiency on the other hand (Ahmed et al., 2021; Zamri et al., 2021). Consumption of polluted water can result in a great threat to living beings hence the wastewater needs to be properly treated before being discharged into the water bodies (Gitis and Hankins, 2018; Hussein and Jasim, 2021). It is noteworthy that due to water scarcity and environmental pollution by emission of pollutants, there is a continual rising global concern regarding the treatment of wastewater in order to make it available for reuse (Hussein and Jasim, 2021; Patel et al., 2021). Due to inefficient traditional treatment technologies, varieties of pollutants reach into the environment which directly and/or indirectly affects flora and fauna. Removal of lower concentrations of pollutants is more challenging and varied concentrations of emerging pollutants can be detected in the municipal sludge and effluents of municipal waste","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43363145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Sr Isotopic Composition of NIES Certified Reference Material No. 28 Urban Aerosols NIES认证标准物质28号城市气溶胶的Sr同位素组成
Frontiers in environmental chemistry Pub Date : 2021-11-10 DOI: 10.3389/fenvc.2021.771759
A. Yamakawa, Kimiyo Nagano, Miyuki Ukachi, K. Onishi, K. Yamashita, T. Shibata, Kazunari Takamiya, T. Kani, S. Bérail, O. Donard, D. Amouroux
{"title":"Sr Isotopic Composition of NIES Certified Reference Material No. 28 Urban Aerosols","authors":"A. Yamakawa, Kimiyo Nagano, Miyuki Ukachi, K. Onishi, K. Yamashita, T. Shibata, Kazunari Takamiya, T. Kani, S. Bérail, O. Donard, D. Amouroux","doi":"10.3389/fenvc.2021.771759","DOIUrl":"https://doi.org/10.3389/fenvc.2021.771759","url":null,"abstract":"An interlaboratory study of the National Institute for Environmental Studies (NIES) certified reference material (CRM) No. 28 Urban Aerosols collected from the filters of a central ventilating system in a building in the Beijing city center from 1996 to 2005 was performed to obtain an information value of the Sr isotopic composition. The Sr isotopic composition was measured using multi-collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) to confirm the CRM’s within- and between-bottle homogeneity, and the results showed a 87Sr/86Sr ratio of 0.710227 ± 0.000019 (2SD, n = 18). The Sr isotopic compositions were intercompared using thermal ionization mass spectrometry (TIMS), which showed good agreement with values obtained at NIES. Subsequently, a consistent 87Sr/86Sr ratio was observed between two dissolution (hotplate vs. high-pressure bomb) and Sr separation (Sr spec resin vs. cation exchange resin) methods. To validate and reproduce the accuracy of our analytical methods, the Sr isotopic compositions of secondary reference materials, JB-1b and JA-2, were also measured. Our results showed that NIES CRM No. 28 is appropriate for the quality control of Sr isotope measurements of particulate matter analyses for environmental and geochemical studies.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45957960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring and modelling of butyltin compounds in Finnish inland lake 芬兰内陆湖丁基锡化合物的监测和建模
Frontiers in environmental chemistry Pub Date : 2021-11-01 DOI: 10.3389/fenvc.2022.1063667
H. Ahkola, J. Juntunen, K. Krogerus, T. Huttula
{"title":"Monitoring and modelling of butyltin compounds in Finnish inland lake","authors":"H. Ahkola, J. Juntunen, K. Krogerus, T. Huttula","doi":"10.3389/fenvc.2022.1063667","DOIUrl":"https://doi.org/10.3389/fenvc.2022.1063667","url":null,"abstract":"In this study we measured the total concentration of BTCs using grab water sampling, dissolved concentration with passive samplers, and particle-bound fraction with sedimentation traps in a Finnish inland lake. The sampling was conducted from May to September over two study years. In grab water samples the average concentration of MBT at sampling sites varied between 4.8 and 13 ng L−1, DBT 0.9–2.4 ng L−1, and TBT 0.4–0.8 ng L−1 during the first study year and 0.6–1.1 ng L−1, DBT 0.5–2.2 ng L−1 and TBT < LOD-0.7 ng L−1 during the second year. The average BTC concentrations determined with passive samplers varied between 0.08 and 0.53 ng L−1 for MBT, 0.10–0.14 ng L−1 for DBT and 0.05–0.07 ng L−1 for TBT during the first study year and 0.03–0.05 ng L−1 for MBT, 0.02–0.05 ng L−1 for DBT and TBT 0.007–0.013 ng L−1 during the second year. The average BTC concentrations measured in sedimented particles collected with sedimentation traps were between 1.5 and 9.0 ng L−1 for MBT, 0.61–22 ng L−1 for DBT and 0.05–1.8 ng L−1 for TBT during the first study year and 3.0–12 ng L−1 for MBT, 1.7–9.8 ng L−1 for DBT and TBT 0.4–1.2 ng L−1 during the second year. The differences between sampling techniques and the detected BTCs were obvious, e.g., tributyltin (TBT) was detected only in 4%–24% of the grab samples, 50% of the sedimentation traps, and 93% of passive samplers. The BTC concentrations measured with grab and passive sampling suggested hydrological differences between the study years. This was confirmed with flow velocity measurements. However, the annual difference was not observed in BTC concentrations measured in settled particles which suggest that only the dissolved BTC fraction varied. The extreme value analysis suggested that grab sampling and sedimentation trap sampling results contain more extreme peak values than passive sampling. However, all high concentrations are not automatically extreme values but indicates that BTCs are present in surface water in trace concentrations despite not being detected with all sampling techniques.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43259051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amino-Thiol Bifunctional Polysilsesquioxane/Carbon Nanotubes Magnetic Composites as Adsorbents for Hg(II) Removal 氨基硫醇双功能倍半硅氧烷/碳纳米管磁性复合材料吸附Hg(II)
Frontiers in environmental chemistry Pub Date : 2021-11-01 DOI: 10.3389/fenvc.2021.706254
Ting Xu, R. Qu, Ying Zhang, Changmei Sun, Ying Wang, Xiangyun Kong, Xue Geng, Chun-nuan Ji
{"title":"Amino-Thiol Bifunctional Polysilsesquioxane/Carbon Nanotubes Magnetic Composites as Adsorbents for Hg(II) Removal","authors":"Ting Xu, R. Qu, Ying Zhang, Changmei Sun, Ying Wang, Xiangyun Kong, Xue Geng, Chun-nuan Ji","doi":"10.3389/fenvc.2021.706254","DOIUrl":"https://doi.org/10.3389/fenvc.2021.706254","url":null,"abstract":"Amino-thiol bifunctional polysilsesquioxane/carbon nanotubes (PSQ/CNTs) magnetic composites were prepared by sol-gel method with two types of functional siloxanes coating on carboxyl CNTs simultaneously. The composites were served as efficient adsorbents for removing Hg(II) in aqueous solution and the adsorption properties were investigated systematically. The optimal pH of bifunctional composites for Hg(II) removal is at pH 4.5. The thermodynamic fitting curves are more consistent with the Langmuir model and the adsorption capacities of the bifunctional composites for Hg(II) varied from 1.63 to 1.94 mmol g−1 at 25°C according to the Langmuir model. The kinetics curves are more fitted to the pseudo-second-order model and the composites could selectively adsorb Hg(II) in a series of binary metal ions solution. The elution regeneration tests showed that the adsorption rate could still reach 78% after repeat cycle three times. It is expected that the bifunctional PSQ/CNTs magnetic composites can be potentially applied to remove low concentration Hg(II) from waste water.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44345065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
In-Situ FTIR Study of Heterogeneous Oxidation of SOA Tracers by Ozone 臭氧非均相氧化SOA示踪剂的原位FTIR研究
Frontiers in environmental chemistry Pub Date : 2021-10-29 DOI: 10.3389/fenvc.2021.732219
Runhua Wang, Yajuan Huang, Qian Hu, G. Cao, Rongshu Zhu
{"title":"In-Situ FTIR Study of Heterogeneous Oxidation of SOA Tracers by Ozone","authors":"Runhua Wang, Yajuan Huang, Qian Hu, G. Cao, Rongshu Zhu","doi":"10.3389/fenvc.2021.732219","DOIUrl":"https://doi.org/10.3389/fenvc.2021.732219","url":null,"abstract":"Secondary organic aerosols (SOA) play an important role in global climate change and air quality, and SOA tracers can directly characterize the source and reaction mechanism of SOA. However, it is not well known that whether the tracers can be oxidized or how the instability of the tracers in the atmosphere. In this paper, in-situ FTIR was used to analyze the chemical structure changes of erythritol, analogue of 2-methyl erythritol (AME) that is, a tracer of isoprene SOA, and 2, 3-dihydroxy-4-oxopentanoic acid (DHOPA), a tracer of toluene SOA, when exposed to high concentration of ozone for short periods. Under the condition of 20 ppm ozone exposure for 30 min, the change rate of absorption area of AME at 3,480 and 1700 cm−1 was −0.0134 and 0.00117 int.abs/s, respectively, and the change rate of the absorption area of DHOPA at 1,640 and 3340cm−1 was −0.00191 and 0.00218 int.abs/s, respectively. The pseudo-first-order reaction rate constant k app were 1.89 × 10−8 and 2.12 × 10−7 s−1, and the uptake coefficients of ozone on the surface of AME and DHOPA were (1.3 ± 0.8) × 10−8 and (4.5 ± 2.7) × 10−8, respectively. These results showed the oxidation processes of AME and DHOPA were slow in the presence of high concentrations of ozone, which implied that AME and DHOPA could be considered to be stable in the atmospheric environment with ozone as the main oxidant.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45117369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metallic Iron for Environmental Remediation: The Fallacy of the Electron Efficiency Concept 用于环境修复的金属铁:电子效率概念的谬误
Frontiers in environmental chemistry Pub Date : 2021-10-29 DOI: 10.3389/fenvc.2021.677813
Rui Hu, A. Ndé-Tchoupé, Viet Cao, W. Gwenzi, C. Noubactep
{"title":"Metallic Iron for Environmental Remediation: The Fallacy of the Electron Efficiency Concept","authors":"Rui Hu, A. Ndé-Tchoupé, Viet Cao, W. Gwenzi, C. Noubactep","doi":"10.3389/fenvc.2021.677813","DOIUrl":"https://doi.org/10.3389/fenvc.2021.677813","url":null,"abstract":"The suitability of remediation systems using metallic iron (Fe0) has been extensively discussed during the past 3 decades. It has been established that aqueous Fe0 oxidative dissolution is not caused by the presence of any contaminant. Instead, the reductive transformation of contaminants is a consequence of Fe0 oxidation. Yet researchers are still maintaining that electrons from the metal body are involved in the process of contaminant reduction. According to the electron efficiency concept, electrons from Fe0 should be redistributed to: i) contaminants of concern (COCs), ii) natural reducing agents (e.g., H2O, O2), and/or iii) reducible co-contaminants (e.g. NO3-). The electron efficiency is defined as the fraction of electrons from Fe0 oxidation which is utilized for the reductive transformations of COCs. This concept is in frontal contradiction with the view that Fe0 is not directly involved in the process of contaminant reduction. This communication recalls the universality of the concept that reductive processes observed in remediation Fe0/H2O systems are mediated by primary (e.g., FeII, H/H2) and secondary (e.g., Fe3O4, green rusts) products of aqueous iron corrosion. The critical evaluation of the electron efficiency concept suggests that it should be abandoned. Instead, research efforts should be directed towards tackling the real challenges for the design of sustainable Fe0-based water treatment systems based on fundamental mechanisms of iron corrosion.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48259803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Environmental Fate and Behavior of the Herbicide Glyphosate in Sandy Soils of Florida Under Citrus Production 除草剂草甘膦在佛罗里达沙质土壤中柑橘生产的环境命运与行为
Frontiers in environmental chemistry Pub Date : 2021-09-21 DOI: 10.3389/fenvc.2021.737391
Biwek Gairhe, Wenwen Liu, O. Batuman, P. Dittmar, D. Kadyampakeni, Ramdas G. Kanissery
{"title":"Environmental Fate and Behavior of the Herbicide Glyphosate in Sandy Soils of Florida Under Citrus Production","authors":"Biwek Gairhe, Wenwen Liu, O. Batuman, P. Dittmar, D. Kadyampakeni, Ramdas G. Kanissery","doi":"10.3389/fenvc.2021.737391","DOIUrl":"https://doi.org/10.3389/fenvc.2021.737391","url":null,"abstract":"Chemical weed control using herbicide glyphosate to manage emerged weeds is an important production practice in Florida citrus. Despite the extensive use of glyphosate in citrus orchards, very limited information is available on its environmental fate and behavior in Florida soils that are predominantly sandy in nature. Hence, the study’s objective was to understand the adsorption-desorption, dissipation dynamics, and vertical movement or leaching of glyphosate in sandy soils in citrus orchards. Laboratory, field, and greenhouse experiments were conducted at Southwest Florida Research and Education Center in Immokalee, Florida. The adsorption-desorption behavior of glyphosate in the soils from three major citrus production areas in Florida was studied utilizing a batch equilibrium method. The dissipation of glyphosate was tracked in the field following its application at the rate of 4.20 kg ae ha−1. Soil leaching columns in greenhouse conditions were used to study the vertical movement of glyphosate. The results suggest that glyphosate has a relatively lower range of adsorption or binding (Kads = 14.28–30.88) in the tested soil types. The field dissipation half-life (DT50) of glyphosate from surface soil was found to be ∼26 days. Glyphosate moved vertically or leached into the soil profile, up to 40 cm in the soil column, when analyzed 40 days after herbicide application. The primary degradation product of glyphosate, i.e., aminomethyl phosphonic acid (AMPA), was also detected up to the depth of 30 cm below the soil surface, indicating the presence of microbial metabolism of glyphosate in the soil.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46635621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The Effect of Heterogeneity on the Distribution and Treatment of PFAS in a Complex Geologic Environment 复杂地质环境中非均质性对PFAS分布和处理的影响
Frontiers in environmental chemistry Pub Date : 2021-09-20 DOI: 10.3389/fenvc.2021.729779
R. McGregor, Leticia Benevenuto
{"title":"The Effect of Heterogeneity on the Distribution and Treatment of PFAS in a Complex Geologic Environment","authors":"R. McGregor, Leticia Benevenuto","doi":"10.3389/fenvc.2021.729779","DOIUrl":"https://doi.org/10.3389/fenvc.2021.729779","url":null,"abstract":"Per-and polyfluoroalkyl substances (PFAS) have been identified as emerging contaminants of concern in the environment in a wide variety of media including groundwater. Typically, PFAS-impacted groundwater is extracted by pump and treat systems and treated using sorptive media such as activated carbon and ion exchange resin. Pump and treat systems are generally considered ineffective for the remediation of dissolved phase contaminants including PFAS but instead are considered applicable for plume containment. An alternative to pump and treat is in-situ treatment. The demonstrated use of in-situ treatment for PFAS-impacted groundwater is limited with only colloidal activated carbon (CAC) being shown to effectively attenuate PFAS over short and moderate time periods. Active research topics for the in-situ treatment of PFAS include the effect of heterogeneity on the distribution of the CAC, the lifespan of the CAC itself, the effect of competitive adsorption/absorption, and the effect of other geochemical conditions on the removal process. This study looked at the effect of heterogeneity on the distribution of CAC and subsequent treatment of PFAS at a site with a multiple aquifer system. The site’s geology varied from a silty sand to sand to fractured bedrock with all three units being impacted by PFAS and benzene (B), toluene (T), ethylbenzene (E), and xylene (X). Parameters evaluated included the distribution of the CAC as well as the subsequent treatment of the PFAS and BTEX. Results of groundwater sampling indicated that the PFAS detected within the groundwater were treated effectively to below their respective reporting limits for the duration of the 1-year test in both the silty sand and sand aquifers. The PFAS in the fractured rock aquifer showed a different treatment profile with longer carbon chained PFAS being attenuated preferentially compared to the shorter carbon chained PFAS. These results suggest that competitive sorptive reactions were occurring on the CAC within the fractured rock. Analysis of the unconsolidated aquifer materials determined that direct push injection of the CAC was effective at delivering the CAC to the target injection zones with post-injection total organic carbon (TOC) concentrations increasing by up to three orders of magnitude compared to pre-injection TOC concentrations. Heterogeneity did have an impact on the CAC distribution with higher hydraulic conductivity zones receiving more CAC mass than lower hydraulic conductivity zones.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48296863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信