Frontiers in antibiotics最新文献

筛选
英文 中文
Impact of acute and chronic exposure to sulfamethoxazole on the kinetics and microbial structure of an activated sludge community 急性和慢性接触磺胺甲噁唑对活性污泥群落动力学和微生物结构的影响
Frontiers in antibiotics Pub Date : 2024-04-02 DOI: 10.3389/frabi.2024.1335654
I. Pala-Ozkok, Tugce Katipoglu-Yazan, T. Olmez-Hanci, Daniel Jonas, E. Ubay‐Cokgor, D. Orhon
{"title":"Impact of acute and chronic exposure to sulfamethoxazole on the kinetics and microbial structure of an activated sludge community","authors":"I. Pala-Ozkok, Tugce Katipoglu-Yazan, T. Olmez-Hanci, Daniel Jonas, E. Ubay‐Cokgor, D. Orhon","doi":"10.3389/frabi.2024.1335654","DOIUrl":"https://doi.org/10.3389/frabi.2024.1335654","url":null,"abstract":"The aim of this study was to reveal the microbial and kinetic impacts of acute and chronic exposure to one of the frequently administered antibiotics, i.e., sulfamethoxazole, on an activated sludge biomass. Respirometric analysis and model evaluation of the oxygen utilization rate profiles were the backbone of this study. The results showed that continuous exposure to sulfamethoxazole resulted in the inhibition of substrate storage and an increase in the endogenous decay rates by twofold, which was supported by analysis of the resistance genes. A mild inhibition on the growth and hydrolysis kinetics was also observed. Moreover, sulfamethoxazole had a binding impact with available organic carbon, resulting in a slightly less oxygen consumption. DNA sequencing and antibiotic resistance gene analyses showed that continuous exposure to sulfamethoxazole caused a change in the community structure at the species level. Resistant bacteria including Arthrobacter sp. and members of the Chitinophagaceae and Intrasporangiaceae families were found to have dominated the bacterial community. The impact of intermittent exposure was also investigated, and the results indicated a drop in the severity of the impact after 20 days of intermittence.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"136 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140754531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated extraction of standardized antibiotic resistance and prescription data from laboratory information systems and electronic health records: a narrative review. 从实验室信息系统和电子健康记录中自动提取标准化抗生素耐药性和处方数据:叙述性回顾。
Frontiers in antibiotics Pub Date : 2024-03-08 eCollection Date: 2024-01-01 DOI: 10.3389/frabi.2024.1380380
Alice Cappello, Ylenia Murgia, Daniele Roberto Giacobbe, Sara Mora, Roberta Gazzarata, Nicola Rosso, Mauro Giacomini, Matteo Bassetti
{"title":"Automated extraction of standardized antibiotic resistance and prescription data from laboratory information systems and electronic health records: a narrative review.","authors":"Alice Cappello, Ylenia Murgia, Daniele Roberto Giacobbe, Sara Mora, Roberta Gazzarata, Nicola Rosso, Mauro Giacomini, Matteo Bassetti","doi":"10.3389/frabi.2024.1380380","DOIUrl":"10.3389/frabi.2024.1380380","url":null,"abstract":"<p><p>Antimicrobial resistance in bacteria has been associated with significant morbidity and mortality in hospitalized patients. In the era of big data and of the consequent frequent need for large study populations, manual collection of data for research studies on antimicrobial resistance and antibiotic use has become extremely time-consuming and sometimes impossible to be accomplished by overwhelmed healthcare personnel. In this review, we discuss relevant concepts pertaining to the automated extraction of antibiotic resistance and antibiotic prescription data from laboratory information systems and electronic health records to be used in clinical studies, starting from the currently available literature on the topic. Leveraging automatic extraction and standardization of antimicrobial resistance and antibiotic prescription data is an tremendous opportunity to improve the care of future patients with severe infections caused by multidrug-resistant organisms, and should not be missed.</p>","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"3 ","pages":"1380380"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining pharmacoepidemiology of antibiotic use and resistance in first-line antibiotics: a self-controlled case series study of Escherichia coli in small companion animals 一线抗生素使用和耐药性的药物流行病学研究:小型伴侣动物中大肠埃希菌的自控病例系列研究
Frontiers in antibiotics Pub Date : 2024-02-27 DOI: 10.3389/frabi.2024.1321368
Olivia S. K. Chan, W. Lam, Tint Naing, Dorothy Yuen Ting Cheong, Elaine Lee, Ben Cowling, Matthew Low
{"title":"Examining pharmacoepidemiology of antibiotic use and resistance in first-line antibiotics: a self-controlled case series study of Escherichia coli in small companion animals","authors":"Olivia S. K. Chan, W. Lam, Tint Naing, Dorothy Yuen Ting Cheong, Elaine Lee, Ben Cowling, Matthew Low","doi":"10.3389/frabi.2024.1321368","DOIUrl":"https://doi.org/10.3389/frabi.2024.1321368","url":null,"abstract":"Clinicians need to prescribe antibiotics in a way that adequately treats infections, while simultaneously limiting the development of antibiotic resistance (ABR). Although there are abundant guidelines on how to best treat infections, there is less understanding of how treatment durations and antibiotic types influence the development of ABR. This study adopts a self-controlled case study (SCCS) method to relate antibiotic exposure time to subsequent changes in resistance patterns. This SCCS approach uses antibiotic exposure as a risk factor, and the development of ABR as an incidence rate ratio (IRR), which can be considered as the multiplicative change in risk for bacteria to become or maintain resistance.To investigate the IRR of extensive (more than 7 antibiotic classes), revert, persistent, and directed antibiotic resistance according to the duration and type of antibiotic exposures in Escherichia coli (E. coli).We use anonymized veterinary clinical data from dog and cat patients older than 6 months between 2015 and 2020. Patients were considered suitable cases if they received antibiotics and had a minimum of two urinary antibiograms within a 12-month period (the first prior to antibiotics exposure and the second from 1 week to 6 months after exposure). The first antibiogram is conducted before antibiotic exposure (case n=20).From 20 individuals and 42 paired antibiograms we found that the IRR = 2 for extensive drug resistance in patients who received short-course antibiotic treatment compared to longer treatments. In contrast, multi-drug resistance IRR = 2.6 for long-course compared to short-course antibiotic treatment. The ratio of E. coli isolates that reverted from resistant to sensitive was 5.4 times more likely in patients who received antibiotics for longer than 10 days.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"29 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140424604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Knowledge, attitude and practices of the public and healthcare-professionals towards sustainable use of antimicrobials: the intersection of pharmacology and social medicine 社论:公众和医疗保健专业人员对可持续使用抗菌药物的认识、态度和做法:药理学与社会医学的交汇点
Frontiers in antibiotics Pub Date : 2024-02-21 DOI: 10.3389/frabi.2024.1374463
Márió Gajdács, Shazia Jamshed
{"title":"Editorial: Knowledge, attitude and practices of the public and healthcare-professionals towards sustainable use of antimicrobials: the intersection of pharmacology and social medicine","authors":"Márió Gajdács, Shazia Jamshed","doi":"10.3389/frabi.2024.1374463","DOIUrl":"https://doi.org/10.3389/frabi.2024.1374463","url":null,"abstract":"","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140445651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping the scarcity of data on antibiotics in natural and engineered water environments across India 绘制印度各地自然水环境和工程水环境中抗生素数据稀缺图
Frontiers in antibiotics Pub Date : 2024-02-12 DOI: 10.3389/frabi.2024.1337261
Sasikaladevi Rathinavelu, Cansu Uluseker, V. Sonkar, Shashidhar Thatikonda, I. Nambi, Jan-Ulrich Kreft
{"title":"Mapping the scarcity of data on antibiotics in natural and engineered water environments across India","authors":"Sasikaladevi Rathinavelu, Cansu Uluseker, V. Sonkar, Shashidhar Thatikonda, I. Nambi, Jan-Ulrich Kreft","doi":"10.3389/frabi.2024.1337261","DOIUrl":"https://doi.org/10.3389/frabi.2024.1337261","url":null,"abstract":"Antimicrobial resistance is a growing public health concern, increasingly recognized as a silent pandemic across the globe. Therefore, it is important to monitor all factors that could contribute to the emergence, maintenance and spread of antimicrobial resistance. Environmental antibiotic pollution is thought to be one of the contributing factors. India is one of the world’s largest consumers and producers of antibiotics. Hence, antibiotics have been detected in different environments across India, sometimes at very high concentrations due to their extensive use in humans and agriculture or due to manufacturing. We summarize the current state of knowledge on the occurrence and transport pathways of antibiotics in Indian water environments, including sewage or wastewater and treatment plants, surface waters such as rivers, lakes, and reservoirs as well as groundwater and drinking water. The factors influencing the distribution of antibiotics in the water environment, such as rainfall, population density and variations in sewage treatment are discussed, followed by existing regulations and policies aimed at the mitigation of environmental antimicrobial resistance in India, which will have global benefits. Then, we recommend directions for future research, development of standardized methods for monitoring antibiotics in water, ecological risk assessment, and exploration of strategies to prevent antibiotics from entering the environment. Finally, we provide an evaluation of how scarce the data is, and how a systematic understanding of the occurrence and concentrations of antibiotics in the water environment in India could be achieved. Overall, we highlight the urgent need for sustainable solutions to monitor and mitigate the impact of antibiotics on environmental, animal, and public health.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"81 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping the scarcity of data on antibiotics in natural and engineered water environments across India 绘制印度各地自然水环境和工程水环境中抗生素数据稀缺图
Frontiers in antibiotics Pub Date : 2024-02-12 DOI: 10.3389/frabi.2024.1337261
Sasikaladevi Rathinavelu, Cansu Uluseker, V. Sonkar, Shashidhar Thatikonda, I. Nambi, Jan-Ulrich Kreft
{"title":"Mapping the scarcity of data on antibiotics in natural and engineered water environments across India","authors":"Sasikaladevi Rathinavelu, Cansu Uluseker, V. Sonkar, Shashidhar Thatikonda, I. Nambi, Jan-Ulrich Kreft","doi":"10.3389/frabi.2024.1337261","DOIUrl":"https://doi.org/10.3389/frabi.2024.1337261","url":null,"abstract":"Antimicrobial resistance is a growing public health concern, increasingly recognized as a silent pandemic across the globe. Therefore, it is important to monitor all factors that could contribute to the emergence, maintenance and spread of antimicrobial resistance. Environmental antibiotic pollution is thought to be one of the contributing factors. India is one of the world’s largest consumers and producers of antibiotics. Hence, antibiotics have been detected in different environments across India, sometimes at very high concentrations due to their extensive use in humans and agriculture or due to manufacturing. We summarize the current state of knowledge on the occurrence and transport pathways of antibiotics in Indian water environments, including sewage or wastewater and treatment plants, surface waters such as rivers, lakes, and reservoirs as well as groundwater and drinking water. The factors influencing the distribution of antibiotics in the water environment, such as rainfall, population density and variations in sewage treatment are discussed, followed by existing regulations and policies aimed at the mitigation of environmental antimicrobial resistance in India, which will have global benefits. Then, we recommend directions for future research, development of standardized methods for monitoring antibiotics in water, ecological risk assessment, and exploration of strategies to prevent antibiotics from entering the environment. Finally, we provide an evaluation of how scarce the data is, and how a systematic understanding of the occurrence and concentrations of antibiotics in the water environment in India could be achieved. Overall, we highlight the urgent need for sustainable solutions to monitor and mitigate the impact of antibiotics on environmental, animal, and public health.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139843544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects 挪威四家污水处理厂存在的抗生素耐药菌:季节和污水来源的影响
Frontiers in antibiotics Pub Date : 2024-02-07 DOI: 10.3389/frabi.2024.1351999
Daniel Basiry, R. Kommedal, K. Kaster
{"title":"The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects","authors":"Daniel Basiry, R. Kommedal, K. Kaster","doi":"10.3389/frabi.2024.1351999","DOIUrl":"https://doi.org/10.3389/frabi.2024.1351999","url":null,"abstract":"Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (blaSHV-1, blaTEM-1, msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC90 values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"28 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139795263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects 挪威四家污水处理厂存在的抗生素耐药菌:季节和污水来源的影响
Frontiers in antibiotics Pub Date : 2024-02-07 DOI: 10.3389/frabi.2024.1351999
Daniel Basiry, R. Kommedal, K. Kaster
{"title":"The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects","authors":"Daniel Basiry, R. Kommedal, K. Kaster","doi":"10.3389/frabi.2024.1351999","DOIUrl":"https://doi.org/10.3389/frabi.2024.1351999","url":null,"abstract":"Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (blaSHV-1, blaTEM-1, msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC90 values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"7 3-4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139855122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient comparison of techniques to counter multi-drug resistant bacteria: prime modules in curation of bacterial infections 应对多重耐药菌技术的瞬时比较:遏制细菌感染的主要模块
Frontiers in antibiotics Pub Date : 2024-01-26 DOI: 10.3389/frabi.2023.1309107
M. Naveed, Muhammad Waseem, Izma Mahkdoom, Nouman Ali, Farrukh Asif, J. Hassan, Hamza Jamil
{"title":"Transient comparison of techniques to counter multi-drug resistant bacteria: prime modules in curation of bacterial infections","authors":"M. Naveed, Muhammad Waseem, Izma Mahkdoom, Nouman Ali, Farrukh Asif, J. Hassan, Hamza Jamil","doi":"10.3389/frabi.2023.1309107","DOIUrl":"https://doi.org/10.3389/frabi.2023.1309107","url":null,"abstract":"Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR. Antibiotic resistance is a big issue since some bacteria may withstand almost all antibiotics. These bacteria can cause serious sickness, making them a public health threat. Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Multidrug resistant Mycobacterium tuberculosis (TB), and CRE are gut bacteria that resist antibiotics. Antimicrobial resistance is rising worldwide, increasing clinical and community morbidity and mortality. Superbugs have made antibiotic resistance in some environmental niches even harder to control. This study introduces new medicinal plants, gene-editing methods, nanomaterials, and bacterial vaccines that will fight MDR bacteria in the future.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":"57 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139593968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Focusing on antimicrobial resistant infections –are we missing the forest for the trees and the patients for pathogens? 关注抗菌药耐药性感染--我们是否只见树木不见森林,只见病原体不见患者?
Frontiers in antibiotics Pub Date : 2023-12-19 DOI: 10.3389/frabi.2023.1329081
Alexander Lawandi, S. Kadri, John H. Powers
{"title":"Focusing on antimicrobial resistant infections –are we missing the forest for the trees and the patients for pathogens?","authors":"Alexander Lawandi, S. Kadri, John H. Powers","doi":"10.3389/frabi.2023.1329081","DOIUrl":"https://doi.org/10.3389/frabi.2023.1329081","url":null,"abstract":"Antimicrobial resistance (AMR) is a challenge because it is associated with worse patient outcomes. To solve the problem will take development of interventions and policies which improve patient outcomes by prolonging survival, improving patient symptoms, function and quality of life. Logically, we should look to focusing resources in areas that would have the greatest impact on public health. AMR takes the approach of focusing on individual pathogens and “pathogen-focused” development. However, evaluating overall infections and their impact on patient outcomes reveals that 17 of 18 infection deaths are associated with susceptible pathogens. Here we discuss recentering on patients and patient outcomes instead of pathogens, and propose six suggestions on how a patient focus impacts areas and incentives for clinical research.","PeriodicalId":73065,"journal":{"name":"Frontiers in antibiotics","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信