{"title":"The Potential Therapeutic Properties of Prunetin against Human Health Complications: A Review of Medicinal Importance and Pharmacological Activities.","authors":"Kanika Patel, Dinesh Kumar Patel","doi":"10.2174/2949681015666220912104743","DOIUrl":"https://doi.org/10.2174/2949681015666220912104743","url":null,"abstract":"<p><strong>Background: </strong>Flavonoids are polyphenolic compounds found to be present in nature and abundant in flowers and fruits. Flavonoidal class phytochemicals have gained interest in the scientific field because of their important pharmacological activities. Several scientific studies have revealed anti-bacterial, anti-oxidant, anti-fungal, analgesic, anti-viral, anti-inflammatory, anti-tumor, anti-parasitic and anti-allergic activities of flavonoidal class phytochemicals. Prunetin is an O-methylated isoflavone that belongs to the phytochemical phytoestrogen class, found to be present in licorice, red cherry, soybean and legumes.</p><p><strong>Methods: </strong>Biological potential and pharmacological activities of prunetin have been investigated in the present work through scientific data analysis of numerous scientific research works. Numerous literature databases have been searched in order to collect the scientific information on prunetin in the present work. Pharmacological activities of prunetin have been investigated in the present work through literature data analysis of different scientific research works. Scientific data have been collected from Google Scholar, Google, PubMed, Science Direct and Scopus. Analytical data on prunetin has been collected from literature sources and analyzed in the present work.</p><p><strong>Results: </strong>Scientific data analysis revealed the biological importance of prunetin in medicine. Prunetin was found to be present in the pea, peach, Oregon cherry, skimmed cheese, cheese, cow kefir and goat kefir. Prunetin is also present in the Prunus avium, Andira surinamensis, Butea superba, Dalbergia sympathetica, Ficus nervosa, Pterospartum tridentatum and Pycnanthus angolensis. Pharmacological data analysis revealed the biological importance of prunetin on bone disorders, cancers, especially hepatocellular carcinoma, urinary bladder cancer, gastric cancer, ovarian cancer, human airway, gut health and enzymes. Scientific data analysis revealed biological effectiveness of prunetin for their angiogenic effects, anti-inflammatory, anti-oxidant, antimicrobial, estrogenic and vasorelaxant potential. Analytical data revealed the importance of modern analytical techniques for qualitative and quantitative analysis of prunetin in the scientific fields.</p><p><strong>Conclusion: </strong>Scientific data analysis in the present investigation revealed the biological importance and pharmacological activities of prunetin in medicine.</p>","PeriodicalId":72844,"journal":{"name":"Drug metabolism and bioanalysis letters","volume":"15 3","pages":"166-177"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10387898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ewurabena Y Afful, Samuel Frimpong-Manso, Samuel O Bekoe, Chris O Barfi, Kwabena F M Opuni, Mahmood B Oppong
{"title":"The Unethical Use of Paracetamol As a Food Tenderizer in Four Selected African Countries: A Major Public Health Concern?","authors":"Ewurabena Y Afful, Samuel Frimpong-Manso, Samuel O Bekoe, Chris O Barfi, Kwabena F M Opuni, Mahmood B Oppong","doi":"10.2174/2949681015666220810125820","DOIUrl":"https://doi.org/10.2174/2949681015666220810125820","url":null,"abstract":"<p><p>Paracetamol poisoning is the commonest cause of acute liver injury. Therefore, the unethical use of paracetamol as a food tenderizer poses a threat to human health. Although this is a common practice in Ghana, Uganda, Nigeria, and Kenya, there are few or no scientific records on the use of paracetamol as a food tenderizer and its deleterious effects, thus making it difficult to regulate this practice. This review aims to fully collate and present a systematic overview of the literature on the use of paracetamol as a food tenderizer in these countries, the potentially harmful effects posed by the practice, and measures in place to curb the situation. Additionally, this review aims to reveal the scientific gaps and areas requiring more research, thus providing a reference for further research to regulate this unscrupulous practice. From our extensive review of the literature, the high cost of fuel used in cooking and longer cooking times are the main reasons for the inappropriate use of paracetamol as a food tenderizer. Also, this review concludes that little has been done to create public awareness of this unethical practice. Furthermore, few ways to monitor, control and regulate this practice have been proposed.</p>","PeriodicalId":72844,"journal":{"name":"Drug metabolism and bioanalysis letters","volume":"15 3","pages":"159-165"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10395945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasma Concentration Profiles for Hepatotoxic Pyrrolizidine Alkaloid Senkirkine in Humans Extrapolated from Rat Data Sets Using a Simplified Physiologically Based Pharmacokinetic Model.","authors":"Yusuke Kamiya, Tomonori Miura, Airi Kato, Norie Murayama, Makiko Shimizu, Hiroshi Yamazaki","doi":"10.2174/1872312801666211220110055","DOIUrl":"https://doi.org/10.2174/1872312801666211220110055","url":null,"abstract":"<p><strong>Aim: </strong>The main aim of the current study was to obtain forward dosimetry assessments of pyrrolizidine alkaloid senkirkine plasma and liver concentrations by setting up a human physiologically based pharmacokinetic (PBPK) model based on the limited information available.</p><p><strong>Background: </strong>The risks associated with plant-derived pyrrolizidine alkaloids as natural toxins have been assessed.</p><p><strong>Objective: </strong>The pyrrolizidine alkaloid senkirkine was investigated because it was analyzed in a European transcriptomics study of natural hepatotoxins and in a study of the alkaloidal constituents of traditional Japanese food plants Petasites japonicus. The in silico human plasma and liver concentrations of senkirkine were modeled using doses reported for acute-term toxicity in humans.</p><p><strong>Methods: </strong>Using a simplified PBPK model established using rat pharmacokinetic data, forward dosimetry was conducted. Since in vitro rat and human intrinsic hepatic clearances were similar; an allometric scaling approach was applied to rat parameters to create a human PBPK model.</p><p><strong>Results: </strong>After oral administration of 1.0 mg/kg in rats in vivo, water-soluble senkirkine was absorbed and cleared from plasma to two orders of magnitude below the maximum concentration in 8 h. Human in silico senkirkine plasma concentration curves were generated after virtual daily oral administrations of 3.0 mg/kg senkirkine (the dose involved in an acute fatal hepatotoxicity case). A high concentration of senkirkine in the culture medium caused in vitro hepatotoxicity as evidenced by lactate dehydrogenase leakage from human hepatocyte-like HepaRG cells.</p><p><strong>Conclusion: </strong>Higher virtual concentrations of senkirkine in human liver and plasma than those in rat plasma were estimated using the current rat and human PBPK models. Current simulations suggest that if P. japonicus (a water-soluble pyrrolizidine alkaloid-producing plant) is ingested daily as food, hepatotoxic senkirkine could be continuously present in human plasma and liver.</p>","PeriodicalId":72844,"journal":{"name":"Drug metabolism and bioanalysis letters","volume":"15 1","pages":"64-69"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10392541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biological Importance and Therapeutic Benefit of Rhamnocitrin: A Review of Pharmacology and Analytical Aspects.","authors":"Dinesh Kumar Patel","doi":"10.2174/2949681015666220609100336","DOIUrl":"https://doi.org/10.2174/2949681015666220609100336","url":null,"abstract":"<p><strong>Background: </strong>Humans have a long history of the uses of plant based products, including extracts and pure phytoconstituents for the treatment of human diseases in the different system of medicine. In the developing countries, phytoproducts play an important role in the healthcare systems due to their medicinal importance and pharmacological activities. Flavonoids class phytochemicals are beneficial for human beings because of their free radical scavenging properties and trace metals chelating potential. Flavonoids have inhibitory potential for the growth of bacteria and virus mainly through enzyme inhibition functions and viral translation. Rhamnocitrin is also called 7- methyl-kaempferol is important flavonoids, which has been isolated from different medicinal plants and has pharmacological activities in the medicine.</p><p><strong>Methods: </strong>Present paper describes the biological potential and health beneficial aspects of rhamnocitrin in the medicine through the data analysis of published papers in the recent years in the field of medicine and modern medical sciences. Scientific data on rhamnocitrin have been collected from electronic databases such as PubMed, Google Scholar, Google, Scopus and Science Direct in the present investigation and analyzed to know the biological importance and pharmacological activities of rhamnocitrin. Pharmacological scientific data of rhamnocitrin have been collected and analyzed in the present work with their analytical aspects.</p><p><strong>Results: </strong>Literature data analysis of different scientific work on rhamnocitrin revealed the biological importance of rhamnocitrin in medicine. Rhamnocitrin is known to be a promising phytoconstituents found to be present in medicinal plants with a wide range of biological activities. Rhamnocitrin was found to have pharmacological activities, including anti-atherogenic, anti-oxidant, anti-cancer, anti-bacterial, anti-inflammatory, enzymatic and neuroprotective potential. Further biological effect of rhamnocitrin on adipocyte differentiation has been also studied in the present work. Analytical data on rhamnocitrin signified the application of different analytical techniques for the separation, isolation and identification of rhamnocitrin in medicine.</p><p><strong>Conclusion: </strong>Literature data analysis of different scientific research works revealed the biological importance and therapeutic benefit of rhamnocitrin in medicine.</p>","PeriodicalId":72844,"journal":{"name":"Drug metabolism and bioanalysis letters","volume":"15 3","pages":"150-158"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10455455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Morteza Akhzari, Mahdi Barazesh, Sajad Jalili, Mohammad Mahdi Farzinezhadi Zadeh
{"title":"Berberine Recovered Oxidative Stress Induced by Sodium Nitrite in Rat Erythrocytes.","authors":"Morteza Akhzari, Mahdi Barazesh, Sajad Jalili, Mohammad Mahdi Farzinezhadi Zadeh","doi":"10.2174/2949681015666220902114519","DOIUrl":"https://doi.org/10.2174/2949681015666220902114519","url":null,"abstract":"<p><strong>Objective: </strong>Berberine, a plant derived alkaloid, present in Berberis species is well known as one of the most important antioxidants. The current research aimed to study the heamatoprotective characteristics of berberine and clarify its plausible mechanisms against sodium nitrite.</p><p><strong>Methods: </strong>Forty numbers of male Sprague Dawley rats were categorized into five equal groups, including group 1: control (normal saline); group 2: berberine (100 mg/kg); group 3: sodium nitrite (80 mg/kg); group 4: sodium nitrite (80 mg/kg) plus berberine (50 mg/kg) and group 5: sodium nitrite (80 mg/kg) plus berberine (100 mg/kg) groups. All animals were orally administrated for two months once daily. At the end of the 60th day, blood samples were withdrawn by cardiac puncture and collected in test vials when the animals had been anesthetized with ketamine (70 mg/kg). Then, hemolysate was prepared and the oxidative stress biomarkers, lipid peroxidation, and antioxidant capacity of erythrocytes were evaluated.</p><p><strong>Results: </strong>Feeding of rats with sodium nitrite remarkably enhanced malondialdehyde (MDA) (p=0.001) levels and considerably reduced the levels of glutathione (GSH) (p=0.001), and also reduced the enzymatic activities of glutathione peroxidase (GPx) (p=0.02), superoxide dismutase (SOD) (p=0.001), glutathione reductase (GR) (p=0.02), and catalase (CAT) (p=0.01). However, the co-administration of these animals with 100 mg/kg of berberine remarkably reverted the values to reach nearly a normal level. While 50 mg/kg berberine failed to restore significantly all of these antioxidant biomarkers at a normal level.</p><p><strong>Conclusion: </strong>Our results clearly demonstrated that berberine in a dose-dependent manner led to protection against sodium nitrite-induced oxidative injury in rat erythrocytes, which possibly reflects the antioxidant ability of this alkaloid.</p>","PeriodicalId":72844,"journal":{"name":"Drug metabolism and bioanalysis letters","volume":"15 3","pages":"192-201"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10396232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Human-malarial Parasite Species based on DHFR and GST Targets Resulting in Changes in Anti-malarial Drug Binding Conformations.","authors":"Shrutika Sakpal, Shanker Lal Kothari, Virupaksha Bastikar","doi":"10.2174/1872312815666220225155728","DOIUrl":"https://doi.org/10.2174/1872312815666220225155728","url":null,"abstract":"<p><strong>Background: </strong>In this study, we focused primarily on three anti-malarial drugs, namely chloroquine, mefloquine, and proguanil, and these were tested against two malarial targets DHFR and GST. The species Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax were used for the study.</p><p><strong>Objective: </strong>The purpose of this study was to determine the sequence and structural similarity of the proteins DHFR and GST among four Plasmodium species as well as to discover the in silico interactions with the aforementioned drug candidates.</p><p><strong>Methods: </strong>Bioinformatics databases, such as PDB, UniProt, DrugBank, PubChem, and tools, and software like Phyre 2.0, Clustal O (1.2.4), AutoDock 4, AutoDock Vina, and Discovery Studio Visualizer were used to determine the evolutionary significance of the Plasmodium species.</p><p><strong>Result: </strong>The variations showed a difference in the binding patterns of drugs with our target proteins. Our finding reveals the Plasmodium spp divergence or convergence as well as the structural and sequential similarity or dissimilarity features.</p><p><strong>Conclusion: </strong>Our result suggests that due to the deviation in the sequences and structures, variations in protein-drug binding patterns have emerged.</p>","PeriodicalId":72844,"journal":{"name":"Drug metabolism and bioanalysis letters","volume":"15 1","pages":"22-37"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10759165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}