Diagnostic and prognostic research最新文献

筛选
英文 中文
Bayesian latent class analysis produced diagnostic accuracy estimates that were more interpretable than composite reference standards for extrapulmonary tuberculosis tests 贝叶斯潜在类别分析产生的诊断准确性估计比肺外结核检测的复合参考标准更具可解释性
Diagnostic and prognostic research Pub Date : 2022-06-16 DOI: 10.1186/s41512-022-00125-x
E. MacLean, Mikashmi Kohli, Lisa Köppel, Ian Schiller, Surendra K Sharma, M. Pai, C. Denkinger, N. Dendukuri
{"title":"Bayesian latent class analysis produced diagnostic accuracy estimates that were more interpretable than composite reference standards for extrapulmonary tuberculosis tests","authors":"E. MacLean, Mikashmi Kohli, Lisa Köppel, Ian Schiller, Surendra K Sharma, M. Pai, C. Denkinger, N. Dendukuri","doi":"10.1186/s41512-022-00125-x","DOIUrl":"https://doi.org/10.1186/s41512-022-00125-x","url":null,"abstract":"","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49635825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A scoping methodological review of simulation studies comparing statistical and machine learning approaches to risk prediction for time-to-event data. 模拟研究的范围界定方法综述,比较统计和机器学习方法对事件时间数据的风险预测
Diagnostic and prognostic research Pub Date : 2022-06-02 DOI: 10.1186/s41512-022-00124-y
Hayley Smith, Michael Sweeting, Tim Morris, Michael J Crowther
{"title":"A scoping methodological review of simulation studies comparing statistical and machine learning approaches to risk prediction for time-to-event data.","authors":"Hayley Smith, Michael Sweeting, Tim Morris, Michael J Crowther","doi":"10.1186/s41512-022-00124-y","DOIUrl":"10.1186/s41512-022-00124-y","url":null,"abstract":"<p><strong>Background: </strong>There is substantial interest in the adaptation and application of so-called machine learning approaches to prognostic modelling of censored time-to-event data. These methods must be compared and evaluated against existing methods in a variety of scenarios to determine their predictive performance. A scoping review of how machine learning methods have been compared to traditional survival models is important to identify the comparisons that have been made and issues where they are lacking, biased towards one approach or misleading.</p><p><strong>Methods: </strong>We conducted a scoping review of research articles published between 1 January 2000 and 2 December 2020 using PubMed. Eligible articles were those that used simulation studies to compare statistical and machine learning methods for risk prediction with a time-to-event outcome in a medical/healthcare setting. We focus on data-generating mechanisms (DGMs), the methods that have been compared, the estimands of the simulation studies, and the performance measures used to evaluate them.</p><p><strong>Results: </strong>A total of ten articles were identified as eligible for the review. Six of the articles evaluated a method that was developed by the authors, four of which were machine learning methods, and the results almost always stated that this developed method's performance was equivalent to or better than the other methods compared. Comparisons were often biased towards the novel approach, with the majority only comparing against a basic Cox proportional hazards model, and in scenarios where it is clear it would not perform well. In many of the articles reviewed, key information was unclear, such as the number of simulation repetitions and how performance measures were calculated.</p><p><strong>Conclusion: </strong>It is vital that method comparisons are unbiased and comprehensive, and this should be the goal even if realising it is difficult. Fully assessing how newly developed methods perform and how they compare to a variety of traditional statistical methods for prognostic modelling is imperative as these methods are already being applied in clinical contexts. Evaluations of the performance and usefulness of recently developed methods for risk prediction should be continued and reporting standards improved as these methods become increasingly popular.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45749533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quality and transparency of reporting derivation and validation prognostic studies of recurrent stroke in patients with TIA and minor stroke: a systematic review TIA和轻度脑卒中患者复发性脑卒中的报告来源和验证预后研究的质量和透明度:一项系统综述
Diagnostic and prognostic research Pub Date : 2022-05-19 DOI: 10.1186/s41512-022-00123-z
K. Abdulaziz, J. Perry, K. Yadav, D. Dowlatshahi, I. Stiell, G. Wells, M. Taljaard
{"title":"Quality and transparency of reporting derivation and validation prognostic studies of recurrent stroke in patients with TIA and minor stroke: a systematic review","authors":"K. Abdulaziz, J. Perry, K. Yadav, D. Dowlatshahi, I. Stiell, G. Wells, M. Taljaard","doi":"10.1186/s41512-022-00123-z","DOIUrl":"https://doi.org/10.1186/s41512-022-00123-z","url":null,"abstract":"","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42169045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Does poor methodological quality of prediction modeling studies translate to poor model performance? An illustration in traumatic brain injury 预测建模研究的方法质量差是否会导致模型性能差?一个关于创伤性脑损伤的例子
Diagnostic and prognostic research Pub Date : 2022-05-05 DOI: 10.1186/s41512-022-00122-0
I. Helmrich, A. Mikolić, D. Kent, H. Lingsma, L. Wynants, E. Steyerberg, D. van Klaveren
{"title":"Does poor methodological quality of prediction modeling studies translate to poor model performance? An illustration in traumatic brain injury","authors":"I. Helmrich, A. Mikolić, D. Kent, H. Lingsma, L. Wynants, E. Steyerberg, D. van Klaveren","doi":"10.1186/s41512-022-00122-0","DOIUrl":"https://doi.org/10.1186/s41512-022-00122-0","url":null,"abstract":"","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49067042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Examining the effect of evaluation sample size on the sensitivity and specificity of COVID-19 diagnostic tests in practice: a simulation study 评估样本量对COVID-19诊断检测灵敏度和特异性影响的模拟研究
Diagnostic and prognostic research Pub Date : 2022-04-25 DOI: 10.1186/s41512-021-00116-4
C. Sammut-Powell, C. Reynard, Joy A Allen, J. McDermott, Julian Braybrook, R. Parisi, D. Lasserson, R. Body, Richard Gail Joy Julian Peter Paul Kerrie Eloise Adam Anna Body Hayward Allen Braybrook Buckle Dark Davis Coo, R. Body, G. Hayward, Joy A Allen, J. Braybrook, P. Buckle, P. Dark, Kerrie Davis, Eloïse Cook, A. Gordon, Anna Halstead, D. Lasserson, A. Lewington, Brian Nicholson, R. Perera-Salazar, J. Simpson, Philip Turner, Graham Prestwich, C. Reynard, Be Riley, Valerie Tate, Mark A. Wilcox
{"title":"Examining the effect of evaluation sample size on the sensitivity and specificity of COVID-19 diagnostic tests in practice: a simulation study","authors":"C. Sammut-Powell, C. Reynard, Joy A Allen, J. McDermott, Julian Braybrook, R. Parisi, D. Lasserson, R. Body, Richard Gail Joy Julian Peter Paul Kerrie Eloise Adam Anna Body Hayward Allen Braybrook Buckle Dark Davis Coo, R. Body, G. Hayward, Joy A Allen, J. Braybrook, P. Buckle, P. Dark, Kerrie Davis, Eloïse Cook, A. Gordon, Anna Halstead, D. Lasserson, A. Lewington, Brian Nicholson, R. Perera-Salazar, J. Simpson, Philip Turner, Graham Prestwich, C. Reynard, Be Riley, Valerie Tate, Mark A. Wilcox","doi":"10.1186/s41512-021-00116-4","DOIUrl":"https://doi.org/10.1186/s41512-021-00116-4","url":null,"abstract":"","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45429790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Quantitative prediction error analysis to investigate predictive performance under predictor measurement heterogeneity at model implementation 定量预测误差分析,以研究模型实现时预测器测量异质性下的预测性能
Diagnostic and prognostic research Pub Date : 2022-04-07 DOI: 10.1186/s41512-022-00121-1
K. Luijken, Jiaolei Song, R. Groenwold
{"title":"Quantitative prediction error analysis to investigate predictive performance under predictor measurement heterogeneity at model implementation","authors":"K. Luijken, Jiaolei Song, R. Groenwold","doi":"10.1186/s41512-022-00121-1","DOIUrl":"https://doi.org/10.1186/s41512-022-00121-1","url":null,"abstract":"","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48348478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multivariable prediction models for health care spending using machine learning: a protocol of a systematic review. 使用机器学习的医疗保健支出的多变量预测模型:系统回顾的协议。
Diagnostic and prognostic research Pub Date : 2022-03-24 DOI: 10.1186/s41512-022-00119-9
Andrew W Huang, Martin Haslberger, Neto Coulibaly, Omar Galárraga, Arman Oganisian, Lazaros Belbasis, Orestis A Panagiotou
{"title":"Multivariable prediction models for health care spending using machine learning: a protocol of a systematic review.","authors":"Andrew W Huang,&nbsp;Martin Haslberger,&nbsp;Neto Coulibaly,&nbsp;Omar Galárraga,&nbsp;Arman Oganisian,&nbsp;Lazaros Belbasis,&nbsp;Orestis A Panagiotou","doi":"10.1186/s41512-022-00119-9","DOIUrl":"https://doi.org/10.1186/s41512-022-00119-9","url":null,"abstract":"<p><strong>Background: </strong>With rising cost pressures on health care systems, machine-learning (ML)-based algorithms are increasingly used to predict health care costs. Despite their potential advantages, the successful implementation of these methods could be undermined by biases introduced in the design, conduct, or analysis of studies seeking to develop and/or validate ML models. The utility of such models may also be negatively affected by poor reporting of these studies. In this systematic review, we aim to evaluate the reporting quality, methodological characteristics, and risk of bias of ML-based prediction models for individual-level health care spending.</p><p><strong>Methods: </strong>We will systematically search PubMed and Embase to identify studies developing, updating, or validating ML-based models to predict an individual's health care spending for any medical condition, over any time period, and in any setting. We will exclude prediction models of aggregate-level health care spending, models used to infer causality, models using radiomics or speech parameters, models of non-clinically validated predictors (e.g., genomics), and cost-effectiveness analyses without predicting individual-level health care spending. We will extract data based on the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies (CHARMS), previously published research, and relevant recommendations. We will assess the adherence of ML-based studies to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement and examine the inclusion of transparency and reproducibility indicators (e.g. statements on data sharing). To assess the risk of bias, we will apply the Prediction model Risk Of Bias Assessment Tool (PROBAST). Findings will be stratified by study design, ML methods used, population characteristics, and medical field.</p><p><strong>Discussion: </strong>Our systematic review will appraise the quality, reporting, and risk of bias of ML-based models for individualized health care cost prediction. This review will provide an overview of the available models and give insights into the strengths and limitations of using ML methods for the prediction of health spending.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40318437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The comparative interrupted time series design for assessment of diagnostic impact: methodological considerations and an example using point-of-care C-reactive protein testing 用于评估诊断影响的比较中断时间序列设计:方法学考虑和使用即时c反应蛋白测试的示例
Diagnostic and prognostic research Pub Date : 2022-03-02 DOI: 10.1186/s41512-022-00118-w
T. Fanshawe, P. Turner, Marjorie M. Gillespie, G. Hayward
{"title":"The comparative interrupted time series design for assessment of diagnostic impact: methodological considerations and an example using point-of-care C-reactive protein testing","authors":"T. Fanshawe, P. Turner, Marjorie M. Gillespie, G. Hayward","doi":"10.1186/s41512-022-00118-w","DOIUrl":"https://doi.org/10.1186/s41512-022-00118-w","url":null,"abstract":"","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43280795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparison of methods for predicting COVID-19-related death in the general population using the OpenSAFELY platform. 使用opensafety平台预测普通人群covid -19相关死亡的方法比较
Diagnostic and prognostic research Pub Date : 2022-02-24 DOI: 10.1186/s41512-022-00120-2
Elizabeth J Williamson, John Tazare, Krishnan Bhaskaran, Helen I McDonald, Alex J Walker, Laurie Tomlinson, Kevin Wing, Sebastian Bacon, Chris Bates, Helen J Curtis, Harriet J Forbes, Caroline Minassian, Caroline E Morton, Emily Nightingale, Amir Mehrkar, David Evans, Brian D Nicholson, David A Leon, Peter Inglesby, Brian MacKenna, Nicholas G Davies, Nicholas J DeVito, Henry Drysdale, Jonathan Cockburn, William J Hulme, Jessica Morley, Ian Douglas, Christopher T Rentsch, Rohini Mathur, Angel Wong, Anna Schultze, Richard Croker, John Parry, Frank Hester, Sam Harper, Richard Grieve, David A Harrison, Ewout W Steyerberg, Rosalind M Eggo, Karla Diaz-Ordaz, Ruth Keogh, Stephen J W Evans, Liam Smeeth, Ben Goldacre
{"title":"Comparison of methods for predicting COVID-19-related death in the general population using the OpenSAFELY platform.","authors":"Elizabeth J Williamson, John Tazare, Krishnan Bhaskaran, Helen I McDonald, Alex J Walker, Laurie Tomlinson, Kevin Wing, Sebastian Bacon, Chris Bates, Helen J Curtis, Harriet J Forbes, Caroline Minassian, Caroline E Morton, Emily Nightingale, Amir Mehrkar, David Evans, Brian D Nicholson, David A Leon, Peter Inglesby, Brian MacKenna, Nicholas G Davies, Nicholas J DeVito, Henry Drysdale, Jonathan Cockburn, William J Hulme, Jessica Morley, Ian Douglas, Christopher T Rentsch, Rohini Mathur, Angel Wong, Anna Schultze, Richard Croker, John Parry, Frank Hester, Sam Harper, Richard Grieve, David A Harrison, Ewout W Steyerberg, Rosalind M Eggo, Karla Diaz-Ordaz, Ruth Keogh, Stephen J W Evans, Liam Smeeth, Ben Goldacre","doi":"10.1186/s41512-022-00120-2","DOIUrl":"10.1186/s41512-022-00120-2","url":null,"abstract":"<p><strong>Background: </strong>Obtaining accurate estimates of the risk of COVID-19-related death in the general population is challenging in the context of changing levels of circulating infection.</p><p><strong>Methods: </strong>We propose a modelling approach to predict 28-day COVID-19-related death which explicitly accounts for COVID-19 infection prevalence using a series of sub-studies from new landmark times incorporating time-updating proxy measures of COVID-19 infection prevalence. This was compared with an approach ignoring infection prevalence. The target population was adults registered at a general practice in England in March 2020. The outcome was 28-day COVID-19-related death. Predictors included demographic characteristics and comorbidities. Three proxies of local infection prevalence were used: model-based estimates, rate of COVID-19-related attendances in emergency care, and rate of suspected COVID-19 cases in primary care. We used data within the TPP SystmOne electronic health record system linked to Office for National Statistics mortality data, using the OpenSAFELY platform, working on behalf of NHS England. Prediction models were developed in case-cohort samples with a 100-day follow-up. Validation was undertaken in 28-day cohorts from the target population. We considered predictive performance (discrimination and calibration) in geographical and temporal subsets of data not used in developing the risk prediction models. Simple models were contrasted to models including a full range of predictors.</p><p><strong>Results: </strong>Prediction models were developed on 11,972,947 individuals, of whom 7999 experienced COVID-19-related death. All models discriminated well between individuals who did and did not experience the outcome, including simple models adjusting only for basic demographics and number of comorbidities: C-statistics 0.92-0.94. However, absolute risk estimates were substantially miscalibrated when infection prevalence was not explicitly modelled.</p><p><strong>Conclusions: </strong>Our proposed models allow absolute risk estimation in the context of changing infection prevalence but predictive performance is sensitive to the proxy for infection prevalence. Simple models can provide excellent discrimination and may simplify implementation of risk prediction tools.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"6 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9149943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosing ventilator-associated pneumonia (VAP) in UK NHS ICUs: the perceived value and role of a novel optical technology. 诊断呼吸机相关肺炎(VAP)在英国NHS icu:一种新型光学技术的感知价值和作用。
Diagnostic and prognostic research Pub Date : 2022-02-10 DOI: 10.1186/s41512-022-00117-x
W S Jones, J Suklan, A Winter, K Green, T Craven, A Bruce, J Mair, K Dhaliwal, T Walsh, A J Simpson, S Graziadio, A J Allen
{"title":"Diagnosing ventilator-associated pneumonia (VAP) in UK NHS ICUs: the perceived value and role of a novel optical technology.","authors":"W S Jones,&nbsp;J Suklan,&nbsp;A Winter,&nbsp;K Green,&nbsp;T Craven,&nbsp;A Bruce,&nbsp;J Mair,&nbsp;K Dhaliwal,&nbsp;T Walsh,&nbsp;A J Simpson,&nbsp;S Graziadio,&nbsp;A J Allen","doi":"10.1186/s41512-022-00117-x","DOIUrl":"https://doi.org/10.1186/s41512-022-00117-x","url":null,"abstract":"<p><strong>Background: </strong>Diagnosing ventilator-associated pneumonia (VAP) in an intensive care unit (ICU) is a complex process. Our aim was to collect, evaluate and represent the information relating to current clinical practice for the diagnosis of VAP in UK NHS ICUs, and to explore the potential value and role of a novel diagnostic for VAP, which uses optical molecular alveoscopy to visualise the alveolar space.</p><p><strong>Methods: </strong>Qualitative study performing semi-structured interviews with clinical experts. Interviews were recorded, transcribed, and thematically analysed. A flow diagram of the VAP patient pathway was elicited and validated with the expert interviewees. Fourteen clinicians were interviewed from a range of UK NHS hospitals: 12 ICU consultants, 1 professor of respiratory medicine and 1 professor of critical care.</p><p><strong>Results: </strong>Five themes were identified, relating to [1] current practice for the diagnosis of VAP, [2] current clinical need in VAP diagnostics, [3] the potential value and role of the technology, [4] the barriers to adoption and [5] the evidence requirements for the technology, to help facilitate a successful adoption. These themes indicated that diagnosis of VAP is extremely difficult, as is the decision to stop antibiotic treatment. The analysis revealed that there is a clinical need for a diagnostic that provides an accurate and timely diagnosis of the causative pathogen, without the long delays associated with return of culture results, and which is not dangerous to the patient. It was determined that the technology would satisfy important aspects of this clinical need for diagnosing VAP (and pneumonia, more generally), but would require further evidence on safety and efficacy in the patient population to facilitate adoption.</p><p><strong>Conclusions: </strong>Care pathway analysis performed in this study was deemed accurate and representative of current practice for diagnosing VAP in a UK ICU as determined by relevant clinical experts, and explored the value and role of a novel diagnostic, which uses optical technology, and could streamline the diagnostic pathway for VAP and other pneumonias.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":" ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830125/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39612870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信