Complex engineering systems (Alhambra, Calif.)最新文献

筛选
英文 中文
Secure consensus control for multi-agent systems under communication constraints via adaptive sliding mode technique 基于自适应滑模的通信约束下多智能体系统安全共识控制
Complex engineering systems (Alhambra, Calif.) Pub Date : 2023-01-01 DOI: 10.20517/ces.2023.06
Mengzhao Ding, Bei Chen
{"title":"Secure consensus control for multi-agent systems under communication constraints via adaptive sliding mode technique","authors":"Mengzhao Ding, Bei Chen","doi":"10.20517/ces.2023.06","DOIUrl":"https://doi.org/10.20517/ces.2023.06","url":null,"abstract":"The consensus tracking problem is investigated for a class of multi-agent systems (MASs) under communication constraints. In particular, as a result of the impact of amplitude attenuation and random interference, communication among followers may inevitably suffer from the fading phenomenon. Meanwhile, the controllers may also be subject to malicious deception attacks, which will disrupt the correct operation of the MASs. Thus, the agents can only update their states based on fading information exchanged with their neighbors and the false control input under attacks. The consensus tracking error variables are first designed via the fading signal received from neighbors. Then, an online estimation strategy is introduced to estimate the unknown attacks, based on which the adaptive sliding mode controller is designed to attenuate the effect of the time-varying attacks on MASs. Convergence analysis of the MASs under the designed control strategy is provided by using the Lyapunov stability theory and adaptive sliding mode control method. Finally, the effectiveness of the theoretical results is verified via numerical simulations.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67657233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of high definition map for accurate and robust localization 生成高清晰度地图,实现准确、鲁棒的定位
Complex engineering systems (Alhambra, Calif.) Pub Date : 2023-01-01 DOI: 10.20517/ces.2022.43
Zhengjie Huang, Sijie Chen, Xing Xi, Yanzhou Li, Ya Li, Shuanglin Wu
{"title":"Generation of high definition map for accurate and robust localization","authors":"Zhengjie Huang, Sijie Chen, Xing Xi, Yanzhou Li, Ya Li, Shuanglin Wu","doi":"10.20517/ces.2022.43","DOIUrl":"https://doi.org/10.20517/ces.2022.43","url":null,"abstract":"This paper presents a framework for generating high-definition (HD) map, and then achieves accurate and robust localization by virtue of the map. An iterative approximation based method is developed to generate a HD map in Lanelet2 format. A feature association method based on structural consistency and feature similarity is proposed to match the elements of the HD map and the actual detected elements. The feature association results from the HD map are used to correct lateral drift in the light detection and ranging odometry. Finally, some experimental results are presented to verify the reliability and accuracy of autonomous driving localization.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67657522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decentralized tracking control design based on intelligent critic for an interconnected spring-mass-damper system 基于智能评价的互联弹簧-质量-阻尼系统分散跟踪控制设计
Complex engineering systems (Alhambra, Calif.) Pub Date : 2023-01-01 DOI: 10.20517/ces.2023.04
Wenqian Fan, Aohua Liu, Ding Wang
{"title":"Decentralized tracking control design based on intelligent critic for an interconnected spring-mass-damper system","authors":"Wenqian Fan, Aohua Liu, Ding Wang","doi":"10.20517/ces.2023.04","DOIUrl":"https://doi.org/10.20517/ces.2023.04","url":null,"abstract":"In this paper, the decentralized tracking control (DTC) problem is investigated for a class of continuous-time nonlinear systems with external disturbances. First, the DTC problem is resolved by converting it into the optimal tracking controller design for augmented tracking isolated subsystems (ATISs). %It is investigated in the form of the nominal system. A cost function with a discount is taken into consideration. Then, in the case of external disturbances, the DTC scheme is effectively constructed via adding the appropriate feedback gain to each ATIS. %Herein, we aim to obtain the optimal control strategy for minimizing the cost function with discount. In addition, utilizing the approximation property of the neural network, the critic network is constructed to solve the Hamilton-Jacobi-Isaacs equation, which can derive the optimal tracking control law and the worst disturbance law. Moreover, the updating rule is improved during the process of weight learning, which removes the requirement for initial admission control. Finally, through the interconnected spring-mass-damper system, a simulation example is given to verify the availability of the DTC scheme.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67657193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear hierarchical control for four-wheel-independent-drive electric vehicle 四轮独立驱动电动汽车非线性层次控制
Complex engineering systems (Alhambra, Calif.) Pub Date : 2023-01-01 DOI: 10.20517/ces.2022.50
Xiang Chen, Y. Qu, Taowen Cui, Jin Zhao
{"title":"Nonlinear hierarchical control for four-wheel-independent-drive electric vehicle","authors":"Xiang Chen, Y. Qu, Taowen Cui, Jin Zhao","doi":"10.20517/ces.2022.50","DOIUrl":"https://doi.org/10.20517/ces.2022.50","url":null,"abstract":"As under-constrained systems, four-wheel-independent-drive (4WID) electric vehicles have more driving degrees of freedom. In this context, reasonable control and distribution of driving or braking torque to each wheel is extremely important from the vehicle safety perspective. However, it is difficult to provide the optimal wheel torque because of the time-varying characteristics and typical over-actuated nature of the system. In light of these challenges, a novel hierarchical control scheme comprising a top- and bottom-level controller is proposed herein. First, for the top-level controller, a time-varying model-predictive-control (TV-MPC) controller is designed based on an extended 3-degree-of-freedom (3-DOF) reference vehicle model. The total driving force and additional yaw moment can be obtained using the TV-MPC. Second, for the bottom-level controller, the torque expression of each wheel is determined using the equal-adhesion-rate-rule -based algorithm. The co-simulation results obtained herein indicate that the proposed control scheme can effectively improve vehicle safety.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67657116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement learning with Takagi-Sugeno-Kang fuzzy systems Takagi-Sugeno-Kang模糊系统的强化学习
Complex engineering systems (Alhambra, Calif.) Pub Date : 2023-01-01 DOI: 10.20517/ces.2023.11
Eric Zander, Ben van Oostendorp, B. Bede
{"title":"Reinforcement learning with Takagi-Sugeno-Kang fuzzy systems","authors":"Eric Zander, Ben van Oostendorp, B. Bede","doi":"10.20517/ces.2023.11","DOIUrl":"https://doi.org/10.20517/ces.2023.11","url":null,"abstract":"","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67657276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic event-triggered practical stabilization of random suspension system based on immersion and invariance 基于浸没和不变性的随机悬架系统动态事件触发实用镇定
Complex engineering systems (Alhambra, Calif.) Pub Date : 2023-01-01 DOI: 10.20517/ces.2023.25
Cun Yang, Zhaojing Wu, Likang Feng
{"title":"Dynamic event-triggered practical stabilization of random suspension system based on immersion and invariance","authors":"Cun Yang, Zhaojing Wu, Likang Feng","doi":"10.20517/ces.2023.25","DOIUrl":"https://doi.org/10.20517/ces.2023.25","url":null,"abstract":"This article investigates the practical stabilization problem of random quarter-car active suspension systems. An adaptive dynamic event-trigger strategy is proposed to stabilize the states of vehicle suspension in response to system uncertainty and controller area network resource constraints. Moreover, the model of random active suspension systems is extended to the general random robot systems; the controller is developed with the aid of a double dynamic surface filter, immersion and invariance (I&I) techniques, and event-triggered mechanisms. The results show that the semi-global stability of error systems is achieved, and there are some improvements in triggering times and adaptive estimation performance under the control framework. Finally, simulation comparison results are provided to prove the advantages of the proposed scheme.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135058931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review on key technologies of green power supply for port microgrid 港口微电网绿色供电关键技术综述
Complex engineering systems (Alhambra, Calif.) Pub Date : 2023-01-01 DOI: 10.20517/ces.2022.46
{"title":"Review on key technologies of green power supply for port microgrid","authors":"","doi":"10.20517/ces.2022.46","DOIUrl":"https://doi.org/10.20517/ces.2022.46","url":null,"abstract":"","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67657069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formal verification of Fuzzy-based XAI for Strategic Combat Game 基于模糊的战略战斗博弈XAI的形式化验证
Complex engineering systems (Alhambra, Calif.) Pub Date : 2023-01-01 DOI: 10.20517/ces.2022.54
Nicholas Ernest, Timothy Arnett, Zachariah Phillips
{"title":"Formal verification of Fuzzy-based XAI for Strategic Combat Game","authors":"Nicholas Ernest, Timothy Arnett, Zachariah Phillips","doi":"10.20517/ces.2022.54","DOIUrl":"https://doi.org/10.20517/ces.2022.54","url":null,"abstract":"Explainable AI is a topic at the forefront of the field currently for reasons involving human trust in AI, correctness, auditing, knowledge transfer, and regulation. AI that is developed with reinforcement learning (RL) is especially of interest due to the non-transparency of what was learned from the environment. RL AI systems have been shown to be \"brittle\" with respect to the conditions it can safely operate in, and therefore ways to show correctness regardless of input values are of key interest. One way to show correctness is to verify the system using Formal Methods, known as Formal Verification. These methods are valuable, but costly and difficult to implement, leading most to instead favor other methodologies for verification that may be less rigorous, but more easily implemented. In this work, we show methods for development of an RL AI system for aspects of the strategic combat game Starcraft 2 that is performant, explainable, and formally verifiable. The resulting system performs very well on example scenarios while retaining explainability of its actions to a human operator or designer. In addition, it is shown to adhere to formal safety specifications about its behavior.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67657128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable AI for bio-medical applications. 用于生物医学应用的可解释人工智能。
Complex engineering systems (Alhambra, Calif.) Pub Date : 2022-12-01 DOI: 10.20517/ces.2022.41
Anoop Sathyan, Abraham Itzhak Weinberg, Kelly Cohen
{"title":"Interpretable AI for bio-medical applications.","authors":"Anoop Sathyan,&nbsp;Abraham Itzhak Weinberg,&nbsp;Kelly Cohen","doi":"10.20517/ces.2022.41","DOIUrl":"https://doi.org/10.20517/ces.2022.41","url":null,"abstract":"<p><p>This paper presents the use of two popular explainability tools called Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive exPlanations (SHAP) to explain the predictions made by a trained deep neural network. The deep neural network used in this work is trained on the UCI Breast Cancer Wisconsin dataset. The neural network is used to classify the masses found in patients as benign or malignant based on 30 features that describe the mass. LIME and SHAP are then used to explain the individual predictions made by the trained neural network model. The explanations provide further insights into the relationship between the input features and the predictions. SHAP methodology additionally provides a more holistic view of the effect of the inputs on the output predictions. The results also present the commonalities between the insights gained using LIME and SHAP. Although this paper focuses on the use of deep neural networks trained on UCI Breast Cancer Wisconsin dataset, the methodology can be applied to other neural networks and architectures trained on other applications. The deep neural network trained in this work provides a high level of accuracy. Analyzing the model using LIME and SHAP adds the much desired benefit of providing explanations for the recommendations made by the trained model.</p>","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9625387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Stability analysis for highly nonlinear switched stochastic systems with time-varying delays 时变时滞高非线性切换随机系统的稳定性分析
Complex engineering systems (Alhambra, Calif.) Pub Date : 2022-01-01 DOI: 10.20517/ces.2022.48
Jing Sun, Haibo Wang
{"title":"Stability analysis for highly nonlinear switched stochastic systems with time-varying delays","authors":"Jing Sun, Haibo Wang","doi":"10.20517/ces.2022.48","DOIUrl":"https://doi.org/10.20517/ces.2022.48","url":null,"abstract":"In this paper, we examine the stability of highly nonlinear switched stochastic systems (SSSs) with time-varying delays, where the switching time instants are deterministic rather than stochastic. Herein, the boundedness of the global solution is first proven for highly nonlinear SSSs via the average dwell time (ADT) method and multiple Lyapunov function (MLF) approach. Then, the stability criteria for qth moment exponential stability and almost surely exponential stability are presented. The main difficulty lies in the presence of switching and time-varying delay terms, which prevents the validation of existing methods. New inequality techniques have been developed to counteract the effects of switching signals and time-varying delays. Finally, an example is provided to verify the effectiveness of the results.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67657080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信