Biophysics reviews最新文献

筛选
英文 中文
Mechanoregulation and function of calponin and transgelin. 钙调蛋白和转铁蛋白的机制调节和功能。
Biophysics reviews Pub Date : 2024-03-19 eCollection Date: 2024-03-01 DOI: 10.1063/5.0176784
Monica Rasmussen, J-P Jin
{"title":"Mechanoregulation and function of calponin and transgelin.","authors":"Monica Rasmussen, J-P Jin","doi":"10.1063/5.0176784","DOIUrl":"10.1063/5.0176784","url":null,"abstract":"<p><p>It is well known that chemical energy can be converted to mechanical force in biological systems by motor proteins such as myosin ATPase. It is also broadly observed that constant/static mechanical signals potently induce cellular responses. However, the mechanisms that cells sense and convert the mechanical force into biochemical signals are not well understood. Calponin and transgelin are a family of homologous proteins that participate in the regulation of actin-activated myosin motor activity. An isoform of calponin, calponin 2, has been shown to regulate cytoskeleton-based cell motility functions under mechanical signaling. The expression of the calponin 2 gene and the turnover of calponin 2 protein are both under mechanoregulation. The regulation and function of calponin 2 has physiological and pathological significance, as shown in platelet adhesion, inflammatory arthritis, arterial atherosclerosis, calcific aortic valve disease, post-surgical fibrotic peritoneal adhesion, chronic proteinuria, ovarian insufficiency, and tumor metastasis. The levels of calponin 2 vary in different cell types, reflecting adaptations to specific tissue environments and functional states. The present review focuses on the mechanoregulation of calponin and transgelin family proteins to explore how cells sense steady tension and convert the force signal to biochemical activities. Our objective is to present a current knowledge basis for further investigations to establish the function and mechanisms of calponin and transgelin in cellular mechanoregulation.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When art and science collide 当艺术与科学碰撞
Biophysics reviews Pub Date : 2024-03-01 DOI: 10.1063/5.0203543
Francesco Pasqualini
{"title":"When art and science collide","authors":"Francesco Pasqualini","doi":"10.1063/5.0203543","DOIUrl":"https://doi.org/10.1063/5.0203543","url":null,"abstract":"","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140091425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosignal-integrated robotic systems with emerging trends in visual interfaces: A systematic review. 视觉界面新趋势下的生物信号集成机器人系统:系统综述。
Biophysics reviews Pub Date : 2024-02-21 eCollection Date: 2024-03-01 DOI: 10.1063/5.0185568
Jaeho Lee, Sina Miri, Allison Bayro, Myunghee Kim, Heejin Jeong, Woon-Hong Yeo
{"title":"Biosignal-integrated robotic systems with emerging trends in visual interfaces: A systematic review.","authors":"Jaeho Lee, Sina Miri, Allison Bayro, Myunghee Kim, Heejin Jeong, Woon-Hong Yeo","doi":"10.1063/5.0185568","DOIUrl":"10.1063/5.0185568","url":null,"abstract":"<p><p>Human-machine interfaces (HMI) are currently a trendy and rapidly expanding area of research. Interestingly, the human user does not readily observe the interface between humans and machines. Instead, interactions between the machine and electrical signals from the user's body are obscured by complex control algorithms. The result is effectively a one-way street, wherein data is only transmitted from human to machine. Thus, a gap remains in the literature: how can information be effectively conveyed to the user to enable mutual understanding between humans and machines? Here, this paper reviews recent advancements in biosignal-integrated wearable robotics, with a particular emphasis on \"visualization\"-the presentation of relevant data, statistics, and visual feedback to the user. This review article covers various signals of interest, such as electroencephalograms and electromyograms, and explores novel sensor architectures and key materials. Recent developments in wearable robotics are examined from control and mechanical design perspectives. Additionally, we discuss current visualization methods and outline the field's future direction. While much of the HMI field focuses on biomedical and healthcare applications, such as rehabilitation of spinal cord injury and stroke patients, this paper also covers less common applications in manufacturing, defense, and other domains.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming 偏离轨道的生物力学生活:不完美的弹性、细胞骨架玻璃化和上皮松动
Biophysics reviews Pub Date : 2023-12-01 DOI: 10.1063/5.0179719
Lior Atia, J. Fredberg
{"title":"A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming","authors":"Lior Atia, J. Fredberg","doi":"10.1063/5.0179719","DOIUrl":"https://doi.org/10.1063/5.0179719","url":null,"abstract":"Textbook descriptions of elasticity, viscosity, and viscoelasticity fail to account for certain mechanical behaviors that typify soft living matter. Here, we consider three examples. First, strong empirical evidence suggests that within lung parenchymal tissues, the frictional stresses expressed at the microscale are fundamentally not of viscous origin. Second, the cytoskeleton (CSK) of the airway smooth muscle cell, as well as that of all eukaryotic cells, is more solid-like than fluid-like, yet its elastic modulus is softer than the softest of soft rubbers by a factor of 104–105. Moreover, the eukaryotic CSK expresses power law rheology, innate malleability, and fluidization when sheared. For these reasons, taken together, the CSK of the living eukaryotic cell is reminiscent of the class of materials called soft glasses, thus likening it to inert materials such as clays, pastes slurries, emulsions, and foams. Third, the cellular collective comprising a confluent epithelial layer can become solid-like and jammed, fluid-like and unjammed, or something in between. Esoteric though each may seem, these discoveries are consequential insofar as they impact our understanding of bronchospasm and wound healing as well as cancer cell invasion and embryonic development. Moreover, there are reasons to suspect that certain of these phenomena first arose in the early protist as a result of evolutionary pressures exerted by the primordial microenvironment. We have hypothesized, further, that each then became passed down virtually unchanged to the present day as a conserved core process. These topics are addressed here not only because they are interesting but also because they track the journey of one laboratory along a path less traveled by.","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139014327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions 光致多肽材料:自组装和生物功能的时空控制
Biophysics reviews Pub Date : 2023-12-01 DOI: 10.1063/5.0179171
K. Matsuura, H. Inaba
{"title":"Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions","authors":"K. Matsuura, H. Inaba","doi":"10.1063/5.0179171","DOIUrl":"https://doi.org/10.1063/5.0179171","url":null,"abstract":"Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein–drug interactions, protein–protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139016554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metalation and activation of Zn2+ enzymes via early secretory pathway-resident ZNT proteins 通过早期分泌途径驻留的 ZNT 蛋白对 Zn2+ 酶进行金属化和激活
Biophysics reviews Pub Date : 2023-12-01 DOI: 10.1063/5.0176048
T. Kambe, T. Wagatsuma
{"title":"Metalation and activation of Zn2+ enzymes via early secretory pathway-resident ZNT proteins","authors":"T. Kambe, T. Wagatsuma","doi":"10.1063/5.0176048","DOIUrl":"https://doi.org/10.1063/5.0176048","url":null,"abstract":"Zinc (Zn2+), an essential trace element, binds to various proteins, including enzymes, transcription factors, channels, and signaling molecules and their receptors, to regulate their activities in a wide range of physiological functions. Zn2+ proteome analyses have indicated that approximately 10% of the proteins encoded by the human genome have potential Zn2+ binding sites. Zn2+ binding to the functional site of a protein (for enzymes, the active site) is termed Zn2+ metalation. In eukaryotic cells, approximately one-third of proteins are targeted to the endoplasmic reticulum; therefore, a considerable number of proteins mature by Zn2+ metalation in the early secretory pathway compartments. Failure to capture Zn2+ in these compartments results in not only the inactivation of enzymes (apo-Zn2+ enzymes), but also their elimination via degradation. This process deserves attention because many Zn2+ enzymes that mature during the secretory process are associated with disease pathogenesis. However, how Zn2+ is mobilized via Zn2+ transporters, particularly ZNTs, and incorporated in enzymes has not been fully elucidated from the cellular perspective and much less from the biophysical perspective. This review focuses on Zn2+ enzymes that are activated by Zn2+ metalation via Zn2+ transporters during the secretory process. Further, we describe the importance of Zn2+ metalation from the physiopathological perspective, helping to reveal the importance of understanding Zn2+ enzymes from a biophysical perspective.","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138608563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current progress toward isogeometric modeling of the heart biophysics 心脏生物物理学等几何建模的最新进展
Biophysics reviews Pub Date : 2023-11-13 DOI: 10.1063/5.0152690
Michele Torre, Simone Morganti, Francesco S. Pasqualini, Alessandro Reali
{"title":"Current progress toward isogeometric modeling of the heart biophysics","authors":"Michele Torre, Simone Morganti, Francesco S. Pasqualini, Alessandro Reali","doi":"10.1063/5.0152690","DOIUrl":"https://doi.org/10.1063/5.0152690","url":null,"abstract":"In this paper, we review a powerful methodology to solve complex numerical simulations, known as isogeometric analysis, with a focus on applications to the biophysical modeling of the heart. We focus on the hemodynamics, modeling of the valves, cardiac tissue mechanics, and on the simulation of medical devices and treatments. For every topic, we provide an overview of the methods employed to solve the specific numerical issue entailed by the simulation. We try to cover the complete process, starting from the creation of the geometrical model up to the analysis and post-processing, highlighting the advantages and disadvantages of the methodology.","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136283305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying nonequilibrium dynamics and thermodynamics of cell fate decision making in yeast under pheromone induction 信息素诱导下酵母细胞命运决策的非平衡动力学和热力学定量研究
Biophysics reviews Pub Date : 2023-09-01 DOI: 10.1063/5.0157759
Sheng Li, Qiong Liu, Erkang Wang, Jin Wang
{"title":"Quantifying nonequilibrium dynamics and thermodynamics of cell fate decision making in yeast under pheromone induction","authors":"Sheng Li, Qiong Liu, Erkang Wang, Jin Wang","doi":"10.1063/5.0157759","DOIUrl":"https://doi.org/10.1063/5.0157759","url":null,"abstract":"Cellular responses to pheromone in yeast can range from gene expression to morphological and physiological changes. While signaling pathways are well studied, the cell fate decision-making during cellular polar growth is still unclear. Quantifying these cellular behaviors and revealing the underlying physical mechanism remain a significant challenge. Here, we employed a hidden Markov chain model to quantify the dynamics of cellular morphological systems based on our experimentally observed time series. The resulting statistics generated a stability landscape for state attractors. By quantifying rotational fluxes as the non-equilibrium driving force that tends to disrupt the current attractor state, the dynamical origin of non-equilibrium phase transition from four cell morphological fates to a single dominant fate was identified. We revealed that higher chemical voltage differences induced by a high dose of pheromone resulted in higher chemical currents, which will trigger a greater net input and, thus, more degrees of the detailed balance breaking. By quantifying the thermodynamic cost of maintaining morphological state stability, we demonstrated that the flux-related entropy production rate provides a thermodynamic origin for the phase transition in non-equilibrium morphologies. Furthermore, we confirmed that the time irreversibility in time series provides a practical way to predict the non-equilibrium phase transition.","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swarming of P. aeruginosa: Through the lens of biophysics. 铜绿假单胞菌的Swarming:通过生物物理学的视角。
Biophysics reviews Pub Date : 2023-09-01 Epub Date: 2023-09-28 DOI: 10.1063/5.0128140
Jean-Louis Bru, Summer J Kasallis, Quantum Zhuo, Nina Molin Høyland-Kroghsbo, Albert Siryaporn
{"title":"Swarming of <i>P. aeruginosa</i>: Through the lens of biophysics.","authors":"Jean-Louis Bru, Summer J Kasallis, Quantum Zhuo, Nina Molin Høyland-Kroghsbo, Albert Siryaporn","doi":"10.1063/5.0128140","DOIUrl":"10.1063/5.0128140","url":null,"abstract":"<p><p>Swarming is a collective flagella-dependent movement of bacteria across a surface that is observed across many species of bacteria. Due to the prevalence and diversity of this motility modality, multiple models of swarming have been proposed, but a consensus on a general mechanism for swarming is still lacking. Here, we focus on swarming by <i>Pseudomonas aeruginosa</i> due to the abundance of experimental data and multiple models for this species, including interpretations that are rooted in biology and biophysics. In this review, we address three outstanding questions about <i>P. aeruginosa</i> swarming: what drives the outward expansion of a swarm, what causes the formation of dendritic patterns (tendrils), and what are the roles of flagella? We review models that propose biologically active mechanisms including surfactant sensing as well as fluid mechanics-based models that consider swarms as thin liquid films. Finally, we reconcile recent observations of <i>P. aeruginosa</i> swarms with early definitions of swarming. This analysis suggests that mechanisms associated with sliding motility have a critical role in <i>P. aeruginosa</i> swarm formation.</p>","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41154961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic approaches for producing lipid-based nanoparticles for drug delivery applications 用于药物递送应用的脂基纳米颗粒的微流控方法
Biophysics reviews Pub Date : 2023-09-01 DOI: 10.1063/5.0150345
Caterina Piunti, Elisa Cimetta
{"title":"Microfluidic approaches for producing lipid-based nanoparticles for drug delivery applications","authors":"Caterina Piunti, Elisa Cimetta","doi":"10.1063/5.0150345","DOIUrl":"https://doi.org/10.1063/5.0150345","url":null,"abstract":"The importance of drug delivery for disease treatment is supported by a vast literature and increasing ongoing clinical studies. Several categories of nano-based drug delivery systems have been considered in recent years, among which lipid-based nanomedicines, both artificial and cell-derived, remain the most approved. The best artificial systems in terms of biocompatibility and low toxicity are liposomes, as they are composed of phospholipids and cholesterol, the main components of cell membranes. Extracellular vesicles—biological nanoparticles released from cells—while resembling liposomes in size, shape, and structure, have a more complex composition with up to hundreds of different types of lipids, proteins, and carbohydrates in their membranes, as well as an internal cargo. Although nanoparticle technologies have revolutionized drug delivery by enabling passive and active targeting, increased stability, improved solubilization capacity, and reduced dose and adverse effects, the clinical translation remains challenging due to manufacturing limitations such as laborious and time-consuming procedures and high batch-to-batch variability. A sea change occurred when microfluidic strategies were employed, offering advantages in terms of precise particle handling, simplified workflows, higher sensitivity and specificity, and good reproducibility and stability over bulk methods. This review examines scientific advances in the microfluidics-mediated production of lipid-based nanoparticles for therapeutic applications. We will discuss the preparation of liposomes using both hydrodynamic focusing of microfluidic flow and mixing by herringbone and staggered baffle micromixers. Then, an overview on microfluidic approaches for producing extracellular vesicles and extracellular vesicles-mimetics for therapeutic applications will describe microfluidic extrusion, surface engineering, sonication, electroporation, nanoporation, and mixing. Finally, we will outline the challenges, opportunities, and future directions of microfluidic investigation of lipid-based nanoparticles in the clinic.","PeriodicalId":72405,"journal":{"name":"Biophysics reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135349016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信